The Annals of Statistics

Nonparametric estimation of an additive model with a link function

Joel L. Horowitz and Enno Mammen

Full-text: Open access


This paper describes an estimator of the additive components of a nonparametric additive model with a known link function. When the additive components are twice continuously differentiable, the estimator is asymptotically normally distributed with a rate of convergence in probability of n−2/5. This is true regardless of the (finite) dimension of the explanatory variable. Thus, in contrast to the existing asymptotically normal estimator, the new estimator has no curse of dimensionality. Moreover, the estimator has an oracle property. The asymptotic distribution of each additive component is the same as it would be if the other components were known with certainty.

Article information

Ann. Statist., Volume 32, Number 6 (2004), 2412-2443.

First available in Project Euclid: 7 February 2005

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62G08: Nonparametric regression
Secondary: 62G20: Asymptotic properties

Additive models multivariate curve estimation nonparametric regression kernel estimates orthogonal series estimator


Horowitz, Joel L.; Mammen, Enno. Nonparametric estimation of an additive model with a link function. Ann. Statist. 32 (2004), no. 6, 2412--2443. doi:10.1214/009053604000000814.

Export citation


  • Bosq, D. (1998). Nonparametric Statistics for Stochastic Procesess. Estimation and Prediction, 2nd ed. Lecture Notes in Statist. 110. Springer, Berlin.
  • Breiman, L. and Friedman, J. H. (1985). Estimating optimal transformations for multiple regression and correlation (with discussion). J. Amer. Statist. Assoc. 80 580--619.
  • Buja, A., Hastie, T. and Tibshirani, R. J. (1989). Linear smoothers and additive models (with discussion). Ann. Statist. 17 453--555.
  • Chen, R., Härdle, W., Linton, O. B. and Severance-Lossin, E. (1996). Nonparametric estimation of additive separable regression models. In Statistical Theory and Computational Aspects of Smoothing (W. Härdle and M. Schimek, eds.) 247--253. Physica, Heidelberg.
  • Fan, J. and Chen, J. (1999). One-step local quasi-likelihood estimation. J. R. Stat. Soc. Ser. B Stat. Methodol. 61 927--943.
  • Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications. Chapman and Hall, London.
  • Fan, J., Härdle, W. and Mammen, E. (1998). Direct estimation of low-dimensional components in additive models. Ann. Statist. 26 943--971.
  • Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models. Chapman and Hall, London.
  • Horowitz, J. L., Klemelä, J. and Mammen, E. (2002). Optimal estimation in additive regression models. Working paper, Institut für Angewandte Mathematik, Ruprecht-Karls-Univertsität, Heidelberg, Germany.
  • Linton, O. B. and Härdle, W. (1996). Estimating additive regression models with known links. Biometrika 83 529--540.
  • Linton, O. B. and Nielsen, J. P. (1995). A kernel method of estimating structured nonparametric regression based on marginal integration. Biometrika 82 93--100.
  • Mammen, E., Linton, O. B. and Nielsen, J. P. (1999). The existence and asymptotic properties of backfitting projection algorithm under weak conditions. Ann. Statist. 27 1443--1490.
  • Newey, W. K. (1997). Convergence rates and asymptotic normality for series estimators. J. Econometrics 79 147--168.
  • Opsomer, J. D. (2000). Asymptotic properties of backfitting estimators. J. Multivariate Anal. 73 166--179.
  • Opsomer, J. D. and Ruppert, D. (1997). Fitting a bivariate additive model by local polynomial regression. Ann. Statist. 25 186--211.
  • Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.
  • Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York.
  • Stone, C. J. (1985). Additive regression and other nonparametric models. Ann. Statist. 13 689--705.
  • Stone, C. J. (1986). The dimensionality reduction principle for generalized additive models. Ann. Statist. 14 590--606.
  • Stone, C. J. (1994). The use of polynomial splines and their tensor products in multivariate function estimation (with discussion). Ann. Statist. 22 118--184.
  • Tjøstheim, D. and Auestad, B. H. (1994). Nonparametric identification of nonlinear time series: Projections. J. Amer. Statist. Assoc. 89 1398--1409.