The Annals of Statistics

Local Whittle estimation in nonstationary and unit root cases

Peter C. B. Phillips and Katsumi Shimotsu

Full-text: Open access

Abstract

Asymptotic properties of the local Whittle estimator in the nonstationary case (d>½) are explored. For ½<d≤1, the estimator is shown to be consistent, and its limit distribution and the rate of convergence depend on the value of d. For d=1, the limit distribution is mixed normal. For d>1 and when the process has a polynomial trend of order α>½, the estimator is shown to be inconsistent and to converge in probability to unity.

Article information

Source
Ann. Statist., Volume 32, Number 2 (2004), 656-692.

Dates
First available in Project Euclid: 28 April 2004

Permanent link to this document
https://projecteuclid.org/euclid.aos/1083178942

Digital Object Identifier
doi:10.1214/009053604000000139

Mathematical Reviews number (MathSciNet)
MR2060173

Zentralblatt MATH identifier
1091.62084

Subjects
Primary: 62M10: Time series, auto-correlation, regression, etc. [See also 91B84]

Keywords
Discrete Fourier transform fractional integration long memory nonstationarity semiparametric estimation trend Whittle likelihood unit root

Citation

Phillips, Peter C. B.; Shimotsu, Katsumi. Local Whittle estimation in nonstationary and unit root cases. Ann. Statist. 32 (2004), no. 2, 656--692. doi:10.1214/009053604000000139. https://projecteuclid.org/euclid.aos/1083178942


Export citation

References

  • Andrews, D. W. K. and Sun, Y. (2001). Local polynomial Whittle estimation of long-range dependence. Discussion Paper 1293, Cowles Foundation, Yale Univ. Available at cowles.econ.yale.edu.
  • Corbae, D., Ouliaris, S. and Phillips, P. C. B. (2002). Band spectral regression with trending data. Econometrica 70 1067--1109.
  • Erdélyi, A., ed. (1953). Higher Transcendental Functions 1. Krieger, Malabar, FL.
  • Gray, H. L., Zhang, N.-F. and Woodward, W. A. (1989). On generalized fractional processes. J. Time Ser. Anal. 10 233--257.
  • Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application. Academic Press, New York.
  • Hurvich, C. M. and Chen, W. W. (2000). An efficient taper for potentially overdifferenced long-memory time series. J. Time Ser. Anal. 21 155--180.
  • Kim, C. S. and Phillips, P. C. B. (1999). Log periodogram regression: The nonstationary case. Mimeograph, Cowles Foundation, Yale Univ.
  • Künsch, H. (1987). Statistical aspects of self-similar processes. In Proc. First World Congress of the Bernoulli Society (Yu. Prokhorov and V. V. Sazanov, eds.) 1 67--74. VNU Science Press, Utrecht.
  • Marinucci, D. and Robinson, P. M. (2000). Weak convergence of multivariate fractional processes. Stochastic Process. Appl. 86 103--120.
  • Nelson, C. R. and Plosser, C. I. (1982). Trends and random walks in macroeconomic time series: Some evidence and implications. J. Monetary Economics 10 139--162.
  • Phillips, P. C. B. (1999a). Discrete Fourier transforms of fractional processes. Discussion Paper 1243, Cowles Foundation, Yale Univ. Available at cowles.econ.yale.edu.
  • Phillips, P. C. B. (1999b). Unit root log periodogram regression. Discussion Paper 1244, Cowles Foundation, Yale University. Available at cowles.econ.yale.edu.
  • Robinson, P. M. (1995). Gaussian semiparametric estimation of long range dependence. Ann. Statist. 23 1630--1661.
  • Robinson, P. M. and Marinucci, D. (2001). Narrow-band analysis of nonstationary processes. Ann. Statist. 29 947--986.
  • Schotman, P. and van Dijk, H. K. (1991). On Bayesian routes to unit roots. J. Appl. Econometrics 6 387--401.
  • Shimotsu, K. and Phillips, P. C. B. (2002). Exact local Whittle estimation of fractional integration. Discussion Paper 1367, Cowles Foundation, Yale Univ. Available at cowles.econ.yale.edu.
  • Velasco, C. (1999). Gaussian semiparametric estimation of non-stationary time series. J. Time Ser. Anal. 20 87--127.
  • Zygmund, A. (1959). Trigonometric Series, 2nd ed. Cambridge Univ. Press.