The Annals of Statistics

On the forward and backward algorithms of projection pursuit

Mu Zhu

Full-text: Open access

Abstract

This article provides a historic review of the forward and backward projection pursuit algorithms, previously thought to be equivalent, and points out an important difference between the two. In doing so, a small error in the original exploratory projection pursuit article by Friedman [J. Amer. Statist. Assoc. 82 1987) 249-266] is corrected. The implication of the difference is briefly discussed in the context of an application in which projection pursuit density estimation is used as a building block for nonparametric discriminant analysis.

Article information

Source
Ann. Statist., Volume 32, Number 1 (2004), 233-244.

Dates
First available in Project Euclid: 12 March 2004

Permanent link to this document
https://projecteuclid.org/euclid.aos/1079120135

Digital Object Identifier
doi:10.1214/aos/1079120135

Mathematical Reviews number (MathSciNet)
MR2051006

Zentralblatt MATH identifier
1105.62334

Subjects
Primary: 62H40

Keywords
Density estimation nonparametric discriminant analysis

Citation

Zhu, Mu. On the forward and backward algorithms of projection pursuit. Ann. Statist. 32 (2004), no. 1, 233--244. doi:10.1214/aos/1079120135. https://projecteuclid.org/euclid.aos/1079120135


Export citation

References

  • Friedberg, S. H., Insel, A. J. and Spence, L. E. (1989). Linear Algebra, 2nd ed. Prentice-Hall, Englewood Cliffs, NJ.
  • Friedman, J. H. (1987). Exploratory projection pursuit. J. Amer. Statist. Assoc. 82 249--266.
  • Friedman, J. H., Stuetzle, W. and Schroeder, A. (1984). Projection pursuit density estimation. J. Amer. Statist. Assoc. 79 599--608.
  • Huber, P. J. (1985). Projection pursuit (with discussion). Ann. Statist. 13 435--525.
  • Polzehl, J. (1995). Projection pursuit discriminant analysis. Comput. Statist. Data Anal. 20 141--157.
  • Zhu, M. and Hastie, T. J. (2003). Feature extraction for nonparametric discriminant analysis. J. Comput. Graph. Statist. 12 101--120.