Open Access
June 1997 A characterization of the Dirichlet distribution through global and local parameter independence
Dan Geiger, David Heckerman
Ann. Statist. 25(3): 1344-1369 (June 1997). DOI: 10.1214/aos/1069362752

Abstract

We provide a new characterization of the Dirichlet distribution. Let $\theta_{ij}, 1 \leq i \leq k, 1 \leq j \leq n$, be positive random variables that sum to unity. Define $\theta_{i \cdot} = \Sigma_{j=1}^n \theta_{ij}, \theta_{I \cdot} = {\theta_{i \cdot}_{i=1}^{k-1}, \theta_{j|i} = \theta_{ij}/ \Sigma_j \theta_{ij}$ and \theta_{J|i} = {\theta_{j|i}}_{j=1}^{n-1}$. We prove that if ${\theta_{I \cdot}, \theta_{J|1}, \dots, \theta_{J|k}}$ are mutually independent and ${\theta_{\cdot J}, \theta_{I|1}, \dots, \theta_{I|n}}$ are mutually independent (where $\theta_{\cdot J}$ and $\theta_{I|j}$ are defined analogously, and each parameter set has a strictly positive pdf, then the pdf of $\theta_{ij}$ is Dirichlet. This characterization implies that under assumptions made by several previous authors for selecting a Bayesian network structure out of a set of candidate structures, a Dirichlet prior on the parameters is inevitable.

Citation

Download Citation

Dan Geiger. David Heckerman. "A characterization of the Dirichlet distribution through global and local parameter independence." Ann. Statist. 25 (3) 1344 - 1369, June 1997. https://doi.org/10.1214/aos/1069362752

Information

Published: June 1997
First available in Project Euclid: 20 November 2003

zbMATH: 0885.62009
MathSciNet: MR1447755
Digital Object Identifier: 10.1214/aos/1069362752

Subjects:
Primary: 60E05 , 62E10
Secondary: 39B99 , 62A15 , 62C10

Keywords: Bayesian network , characterization , Dirichlet distribution , functional equation , Graphical model , hyper-Markov law

Rights: Copyright © 1997 Institute of Mathematical Statistics

Vol.25 • No. 3 • June 1997
Back to Top