The Annals of Statistics

Projection-based depth functions and associated medians

Yijun Zuo

Full-text: Open access

Abstract

A class of projection-based depth functions is introduced and studied. These projection-based depth functions possess desirable properties of statistical depth functions and their sample versions possess strong and order $\sqrt{n}$ uniform consistency. Depth regions and contours induced from projection-based depth functions are investigated. Structural properties of depth regions and contours and general continuity and convergence results of sample depth regions are obtained.

Affine equivariant multivariate medians induced from projection-based depth functions are probed. The limiting distributions as well as the strong and order $\sqrt{n}$ consistency of the sample projection medians are established. The finite sample performance of projection medians is compared with that of a leading depth-induced median, the Tukey halfspace median (induced from the Tukey halfspace depth function). It turns out that, with appropriate choices of univariate location and scale estimators, the projection medians have a very high finite sample breakdown point and relative efficiency, much higher than those of the halfspace median.

Based on the results obtained, it is found that projection depth functions and projection medians behave very well overall compared with their competitors and consequently are good alternatives to statistical depth functions and affine equivariant multivariate location estimators, respectively.

Article information

Source
Ann. Statist., Volume 31, Number 5 (2003), 1460-1490.

Dates
First available in Project Euclid: 9 October 2003

Permanent link to this document
https://projecteuclid.org/euclid.aos/1065705115

Digital Object Identifier
doi:10.1214/aos/1065705115

Mathematical Reviews number (MathSciNet)
MR2012822

Zentralblatt MATH identifier
1046.62056

Subjects
Primary: 62H05: Characterization and structure theory 62F35: Robustness and adaptive procedures
Secondary: 62G05: Estimation 62H12: Estimation

Keywords
Depth function depth contour multivariate median consistency asymptotic distribution breakdown point relative efficiency robustness projection pursuit method

Citation

Zuo, Yijun. Projection-based depth functions and associated medians. Ann. Statist. 31 (2003), no. 5, 1460--1490. doi:10.1214/aos/1065705115. https://projecteuclid.org/euclid.aos/1065705115


Export citation

References

  • Arcones, M. A. and Giné, E. (1993). Limit theorems for $U$-processes. Ann. Probab. 21 1494--1542.
  • Bai, Z.-D. and He, X. (1999). Asymptotic distributions of the maximal depth estimators for regression and multivariate location. Ann. Statist. 27 1616--1637.
  • Beran, R. J. and Millar, P. W. (1997). Multivariate symmetry models. In Festschrift for Lucien Le Cam: Research Papers in Probability and Statistics (D. Pollard, E. Torgersen and G. L. Yang, eds.) 13--42. Springer, Berlin.
  • Cui, H. I. and Tian, Y. B. (1994). On the median absolute deviation of projected distribution and its applications. J. Systems Sci. Math. Sci. 14 63--72 (in Chinese).
  • Donoho, D. L. (1982). Breakdown properties of multivariate location estimators. Ph.D. qualifying paper, Dept. Statistics, Harvard Univ.
  • Donoho, D. L. and Gasko, M. (1992). Breakdown properties of location estimates based on halfspace depth and projected outlyingness. Ann. Statist. 20 1803--1827.
  • Donoho, D. L. and Huber, P. J. (1983). The notion of breakdown point. In A Festschrift for Erich L. Lehmann (P. J. Bickel, K. A. Doksum and J. L. Hodges, Jr., eds.) 157--184. Wadsworth, Belmont, CA.
  • Fang, K. T., Kotz, S. and Ng, K. W. (1990). Symmetric Multivariate and Related Distributions. Chapman and Hall, London.
  • Gather, U. and Hilker, T. (1997). A note on Tyler's modification of the MAD for the Stahel--Donoho estimator. Ann. Statist. 25 2024--2026.
  • Hall, P. and Welsh, A. H. (1985). Limit theorems for the median deviation. Ann. Inst. Statist. Math. 37 27--36.
  • He, X. and Wang, G. (1997). Convergence of depth contours for multivariate datasets. Ann. Statist. 25 495--504.
  • Huber, P. J. (1981). Robust Statistics. Wiley, New York.
  • Jurečková, J. and Sen, P. K. (1996). Robust Statistical Procedures: Asymptotics and Interrelations. Wiley, New York.
  • Kim, J. (2000). Rate of convergence of depth contours: With application to a multivariate metrically trimmed mean. Statist. Probab. Lett. 49 393--400.
  • Kim, J. and Pollard, D. (1990). Cube root asymptotics. Ann. Statist. 18 191--219.
  • Liu, R. Y. (1990). On a notion of data depth based on random simplices. Ann. Statist. 18 405--414.
  • Liu, R. Y. (1992). Data depth and multivariate rank tests. In $L_1$-Statistical Analysis and Related Methods (Y. Dodge, ed.) 279--294. North-Holland, Amsterdam.
  • Liu, R. Y. (1995). Control charts for multivariate processes. J. Amer. Statist. Assoc. 90 1380--1387.
  • Liu, R. Y., Parelius, J. M. and Singh, K. (1999). Multivariate analysis by data depth: Descriptive statistics, graphics and inference (with discussion). Ann. Statist. 27 783--858.
  • Liu, R. Y. and Singh, K. (1993). A quality index based on data depth and multivariate rank tests. J. Amer. Statist. Assoc. 88 252--260.
  • Liu, R. Y. and Singh, K. (1997). Notions of limiting $P$-values based on data depth and bootstrap. J. Amer. Statist. Assoc. 92 266--277.
  • Lopuhaä, H. P. and Rousseeuw, J. (1991). Breakdown points of affine equivariant estimators of multivariate location and covariance matrices. Ann. Statist. 19 229--248.
  • Massé, J. C. (1999). Asymptotics for the Tukey depth. Preprint.
  • Massé, J. C. and Theodorescu, R. (1994). Halfplane trimming for bivariate distributions. J. Multivariate Anal. 48 188--202.
  • Mosteller, F. and Tukey, J. W. (1977). Data Analysis and Regression. Addison-Wesley, Reading, MA.
  • Nolan, D. (1992). Asymptotics for multivariate trimming. Stochastic Process. Appl. 42 157--169.
  • Nolan, D. (1999). On min-max majority and deepest points. Statist. Probab. Lett. 43 325--334.
  • Pollard, D. (1984). Convergence of Stochastic Processes. Springer, Berlin.
  • Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1996). Numerical Recipes in FORTRAN 90. The Art of Parallel Scientific Computing. Cambridge Univ. Press.
  • Randles, R. H. (2000). A simpler, affine-invariant, multivariate, distribution-free sign test. J. Amer. Statist. Assoc. 95 1263--1268.
  • Randles, R. H. and Wolfe, D. A. (1979). Introduction to the Theory of Nonparametric Statistics. Wiley, New York.
  • Rousseeuw, P. J. (1984). Least median of squares regression. J. Amer. Statist. Assoc. 79 871--880.
  • Rousseeuw, P. J. and Hubert, M. (1999). Regression depth (with discussion). J. Amer. Statist. Assoc. 94 388--433.
  • Rousseeuw, P. J. and Ruts, I. (1998). Constructing the bivariate Tukey median. Statist. Sinica 8 827--839.
  • Rousseeuw, P. J. and Ruts, I. (1999). The depth function of a population distribution. Metrika 49 213--244.
  • Rudin, W. (1987). Real and Complex Analysis, 3rd ed. McGraw-Hill, New York.
  • Serfling, R. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York.
  • Serfling, R. (2002a). Quantile functions for multivariate analysis: Approaches and applications. Statist. Neerlandica 56 214--232.
  • Serfling, R. (2002b). Generalized quantile processes based on multivariate depth functions, with applications in nonparametric multivariate analysis. J. Multivariate Anal. 83 232--247.
  • Stahel, W. A. (1981). Breakdown of covariance estimators. Research Report 31, Fachgruppe für Statistik, ETH, Zürich.
  • Struyf, A. and Rousseeuw, P. J. (2000). High-dimensional computation of the deepest location. Comput. Statist. Data Anal. 34 415--426.
  • Tukey, J. W. (1975). Mathematics and the picturing of data. In Proceedings of the International Congress of Mathematicians 523--531. Canad. Math. Congress, Montreal.
  • Tyler, D. E. (1994). Finite sample breakdown points of projection based multivariate location and scatter statistics. Ann. Statist. 22 1024--1044.
  • van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes with Applications to Statistics. Springer, New York.
  • Zhang, J. (2002). Some extensions of Tukey's depth function. J. Multivariate Anal. 82 134--165.
  • Zuo, Y., Cui, H. and He, X. (2001). On the Stahel--Donoho estimators and depth-weighted means of multivariate data. Ann. Statist. To appear.
  • Zuo, Y. and Serfling, R. (2000a). General notions of statistical depth function. Ann. Statist. 28 461--482.
  • Zuo, Y. and Serfling, R. (2000b). Structural properties and convergence results for contours of sample statistical depth functions. Ann. Statist. 28 483--499.
  • Zuo, Y. and Serfling, R. (2000c). On the performance of some robust nonparametric location measures relative to a general notion of multivariate symmetry. J. Statist. Plann. Inference 84 55--79.
  • Zuo, Y. and Serfling, R. (2000d). Nonparametric notions of multivariate ``scatter measure'' and ``more scattered'' based on statistical depth functions. J. Multivariate Anal. 75 62--78.