The Annals of Statistics

A scatter matrix estimate based on the zonotope

Gleb A. Koshevoy, Jyrki Möttönen, and Hannu Oja

Full-text: Open access

Abstract

We introduce a new scatter matrix functional which is a multivariate affine equivariant extension of the mean deviation $E(|x-\mbox{Med}(x)|)$. The estimate is constructed using the data vectors (centered with the multivariate Oja median) and their angular distances. The angular distance is based on Randles interdirections. The new estimate is called the zonoid covariance matrix (the ZCM), as it is the regular covariance matrix of the centers of the facets of the zonotope based on the data set. There is a kind of symmetry between the zonoid covariance matrix and the affine equivariant sign covariance matrix; interchanging the roles of data vectors and hyperplanes yields the sign covariance matrix as the zonoid covariance matrix. It turns out that the symmetry relies on the zonoid of the distribution and its projection body which is also a zonoid.) The influence function and limiting distribution of the new scatter estimate, the ZCM, are derived to consider the robustness and efficiency properties of the estimate. Finite-sample efficiencies are studied in a small simulation study. The influence function of the ZCM is unbounded (linear in the radius of the contamination vector) but less influential in the tails than that of the regular covariance matrix (quadratic in the radius). The estimate is highly efficient in the multivariate normal case and performs better than the regular covariance matrix for heavy-tailed distributions.

Article information

Source
Ann. Statist., Volume 31, Number 5 (2003), 1439-1459.

Dates
First available in Project Euclid: 9 October 2003

Permanent link to this document
https://projecteuclid.org/euclid.aos/1065705114

Digital Object Identifier
doi:10.1214/aos/1065705114

Mathematical Reviews number (MathSciNet)
MR2012821

Zentralblatt MATH identifier
1046.62058

Subjects
Primary: 62H12: Estimation

Keywords
Interdirection parallelotope multivariate mean deviation multivariate median multivariate signs sign covariance matrix scatter matrix zonoid zonoid covariance matrix zonotope

Citation

Koshevoy, Gleb A.; Möttönen, Jyrki; Oja, Hannu. A scatter matrix estimate based on the zonotope. Ann. Statist. 31 (2003), no. 5, 1439--1459. doi:10.1214/aos/1065705114. https://projecteuclid.org/euclid.aos/1065705114


Export citation

References

  • Arcones, M. A., Chen, Z. and Giné, E. (1994). Estimators related to $U$-processes with applications to multivariate medians: Asymptotic normality. Ann. Statist. 22 1460--1477.
  • Croux, C. and Haesbroeck, G. (2000). Principal component analysis based on robust estimators of the covariance or correlation matrix: Influence functions and efficiencies. Biometrika 87 603--618.
  • Croux, C., Ollila, E. and Oja, H. (2002). Sign and rank covariance matrices: Statistical properties and application to principal component analysis. In Statistical Data Analysis Based on the $L_1$ Norm and Related Methods (Y. Dodge, ed.) 257--270. Birkhäuser, Basel.
  • Gardner, R. J. (1995). Geometric Tomography. Cambridge Univ. Press.
  • Hallin, M. and Paindaveine, D. (2002). Optimal tests for multivariate location based on interdirections and pseudo-Mahalanobis ranks. Ann. Statist. 30 1103--1133.
  • Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J. and Stahel, W. A. (1986). Robust Statistics. The Approach Based on Influence Functions. Wiley, New York.
  • Koshevoy, G. and Mosler, K. (1997a). Multivariate Gini indices. J. Multivariate Anal. 60 252--276.
  • Koshevoy, G. and Mosler, K. (1997b). Zonoid trimming for multivariate distributions. Ann. Statist. 25 1998--2017.
  • Koshevoy, G. and Mosler, K. (1998). Lift zonoids, random convex hulls and the variability of random vectors. Bernoulli 4 377--399.
  • Mosler, K. (2002). Multivariate Dispersion, Central Regions, and Depth: The Lift Zonoid Approach. Lecture Notes in Statist. 165. Springer, New York.
  • Oja, H. (1983). Descriptive statistics for multivariate distributions. Statist. Probab. Lett. 1 327--332.
  • Oja, H. (1999). Affine invariant multivariate sign and rank tests and corresponding estimates: A review. Scand. J. Statist. 26 319--343.
  • Ollila, E., Hettmansperger, T. P. and Oja, H. (2002). Affine equivariant multivariate sign methods. Unpublished manuscript.
  • Ollila, E., Oja, H. and Croux, C. (2002). The affine equivariant sign covariance matrix: Asymptotic behavior and efficiency. Unpublished manuscript.
  • Ollila, E., Oja, H. and Hettmansperger, T. P. (2002). Estimates of regression coefficients based on the sign covariance matrix. J. R. Stat. Soc. Ser. B Stat. Methodol. 64 447--466.
  • Peters, D. and Randles, R. H. (1990). A multivariate signed-rank test for the one-sample location problem. J. Amer. Statist. Assoc. 85 552--557.
  • Randles, R. H. (1989). A distribution-free multivariate sign test based on interdirections. J. Amer. Statist. Assoc. 84 1045--1050.
  • Visuri, S., Koivunen, V. and Oja, H. (2000). Sign and rank covariance matrices. J. Statist. Plann. Inference 91 557--575.
  • Visuri, S., Ollila, E., Koivunen, V., Möttönen, J. and Oja, H. (2003). Affine equivariant multivariate rank methods. J. Statist. Plann. Inference 114 161--185.