The Annals of Statistics

A necessary and sufficient condition for asymptotic independence of discrete Fourier transforms under short- and long-range dependence

S. N. Lahiri

Full-text: Open access

Abstract

Let $\{X_t\}$ be a stationary time series and let $d_T(\lambda)$ denote the discrete Fourier transform (DFT) of $\{X_0,\ldots,X_{T-1}\}$ with a data taper. The main results of this paper provide a characterization of asymptotic independence of the DFTs in terms of the distance between their arguments under both short- and long-range dependence of the process $\{X_t\}$. Further, asymptotic joint distributions of the DFTs $d_T(\lambda_{1T})$ and $d_T(\lambda_{2T})$ are also established for the cases $T(\lambda_{1T}- \lambda_{2T})=O(1)$ as $T\to\infty$ (asymptotically close ordinates) and $|T(\lambda_{1_T}-\lambda_{2_T})|\to\infty$ as $T\to\infty$ (asymptotically distant ordinates). Some implications of the main results on the estimation of the index of dependence are also discussed.

Article information

Source
Ann. Statist., Volume 31, Number 2 (2003), 613-641.

Dates
First available in Project Euclid: 22 April 2003

Permanent link to this document
https://projecteuclid.org/euclid.aos/1051027883

Digital Object Identifier
doi:10.1214/aos/1051027883

Mathematical Reviews number (MathSciNet)
MR1983544

Zentralblatt MATH identifier
1039.62087

Subjects
Primary: 62M10: Time series, auto-correlation, regression, etc. [See also 91B84]
Secondary: 62M15: Spectral analysis 62E20: Asymptotic distribution theory

Keywords
Asymptotic independence discrete Fourier transform long-range dependence stationarity

Citation

Lahiri, S. N. A necessary and sufficient condition for asymptotic independence of discrete Fourier transforms under short- and long-range dependence. Ann. Statist. 31 (2003), no. 2, 613--641. doi:10.1214/aos/1051027883. https://projecteuclid.org/euclid.aos/1051027883


Export citation

References

  • ADENSTEDT, R. K. (1974). On large-sample estimation for the mean of a stationary random sequence. Ann. Statist. 2 1095-1107.
  • BERAN, J. (1994). Statistics for Long-Memory Processes. Chapman and Hall, London.
  • BRILLINGER, D. (1981). Time Series: Data Analy sis and Theory, 2nd ed. Holden-Day, San Francisco.
  • BROCKWELL, P. J. and DAVIS, R. A. (1991). Time Series: Theory and Methods, 2nd ed. Springer, New York.
  • CHOW, Y. S. and TEICHER, H. (1988). Probability Theory, 2nd ed. Springer, New York.
  • DAHLHAUS, R. (1983). Spectral analysis with tapered data. J. Time Ser. Anal. 4 163-175.
  • DAHLHAUS, R. (1985). Asy mptotic normality of spectral estimates. J. Multivariate Anal. 16 412- 431.
  • DAHLHAUS, R. and JANAS, D. (1996). A frequency domain bootstrap for ratio statistics in time series analysis. Ann. Statist. 24 1934-1963.
  • DOOB, J. L. (1953). Stochastic Processes. Wiley, New York.
  • FELLER, W. (1971). An Introduction to Probability Theory and Its Applications 2, 2nd ed. Wiley, New York.
  • FIELD, C. A. and RONCHETTI, E. (1990). Small Sample Asy mptotics. IMS, Hay ward, CA.
  • FRANKE, J. and HÄRDLE, W. (1992). On bootstrapping kernel spectral estimates. Ann. Statist. 20 121-145.
  • FULLER, W. (1976). Introduction to Statistical Time Series. Wiley, New York.
  • GEWEKE, J. and PORTER-HUDAK, S. (1983). The estimation and application of long-memory timeseries models. J. Time Ser. Anal. 4 221-238.
  • GRANGER, C. W. J. and JOy EUX, R. (1980). An introduction to long-memory time series models and fractional differencing. J. Time Ser. Anal. 1 15-29.
  • HANNAN, E. J. (1970). Multiple Time Series. Wiley, New York.
  • HANNAN, E. J. and THOMSON, P. J. (1971). Spectral inference over narrow bands. J. Appl.Probab. 8 157-169.
  • HOSKING, J. R. M. (1981). Fractional differencing. Biometrika 68 165-176.
  • HOSOy A, Y. and TANIGUCHI, M. (1982). A central limit theorem for stationary processes and the parameter estimation of linear processes. Ann. Statist. 10 132-153.
  • HURVICH, C. M. and BELTRAO, K. I. (1993). Asy mptotics for the low-frequency ordinates of the periodogram of a long memory time series. J. Time Ser. Anal. 14 455-472.
  • HURVICH, C. M., DEO, R. and BRODSKY, J. (1998). The mean squared error of Geweke and PorterHudak's estimator of the memory parameter of a long memory time series. J. Time Ser. Anal. 19 19-46.
  • HURVICH, C. M. and ZEGER, S. (1987). Frequency domain bootstrap methods for time series. Research working paper, Dept. Statistics and Operations Research, New York Univ.
  • KAWATA, T. (1966). On the Fourier series of a stationary stochastic process. Z. Wahrsch. Verw. Gebiete 6 224-245.
  • KAWATA, T. (1969). On the Fourier series of a stationary process. II. Z. Wahrsch. Verw. Gebiete 13 25-38.
  • KÜNSCH, H. R. (1986). Discrimination between monotonic trends and long range dependence. J. Appl. Probab. 23 1025-1030.
  • MANDELBROT, B. B. and VAN NESS, J. W. (1968). Fractional Brownian motions, fractional noise and applications. SIAM Rev. 10 422-437.
  • MOULINES, E. and SOULIER, P. (1999). Broadband log-periodogram regression of times series with long-range dependence. Ann. Statist. 27 1415-1439.
  • PHAM, D. T. and GUÉGAN, D. (1994). Asy mptotic normality of the discrete Fourier transform of long memory time series. Statist. Probab. Lett. 21 299-309.
  • ROBINSON, P. M. (1986). On the errors-in-variables problem for time series. J. Multivariate Anal. 19 240-250.
  • ROBINSON, P. M. (1995). Log-periodogram regression of time-series with long-range dependence. Ann. Statist. 23 1048-1072.
  • TAQQU, M. S. (1979). Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. Verw. Gebiete 50 53-83.
  • THOMSON, D. J. (1982). Spectrum estimation and harmonic analysis. Proc. IEEE 70 1055-1096.
  • VELASCO, C. (1999a). Gaussian semiparametric estimation of non-stationary time series. J. Time Ser. Anal. 20 87-127.
  • VELASCO, C. (1999b). Non-stationary log-periodogram regression. J. Econometrics 91 325-371.
  • YAJIMA, Y. (1989). A central limit theorem of Fourier transforms of strongly dependent stationary processes. J. Time Ser. Anal. 10 375-383.
  • ZURBENKO, I. G. (1979). On the efficiency of estimates of a spectral density. Scand. J. Statist. 6 49-56.
  • ZURBENKO, I. G. (1986). The Spectral Analy sis of Time Series. North-Holland, Amsterdam.
  • AMES, IOWA 50011-1210 E-MAIL: snlahiri@iastate.edu