The Annals of Statistics
- Ann. Statist.
- Volume 31, Number 2 (2003), 379-390.
Compound decision theory and empirical Bayes methods: invited paper
Full-text: Open access
Article information
Source
Ann. Statist., Volume 31, Number 2 (2003), 379-390.
Dates
First available in Project Euclid: 22 April 2003
Permanent link to this document
https://projecteuclid.org/euclid.aos/1051027872
Digital Object Identifier
doi:10.1214/aos/1051027872
Mathematical Reviews number (MathSciNet)
MR1983534
Subjects
Primary: 62C12: Empirical decision procedures; empirical Bayes procedures 62C25: Compound decision problems
Secondary: 62G08: Nonparametric regression 62G05: Estimation
Keywords
Empirical Bayes compound decision theory nonparametric inference prediction
Citation
Zhang, Cun-Hui. Compound decision theory and empirical Bayes methods: invited paper. Ann. Statist. 31 (2003), no. 2, 379--390. doi:10.1214/aos/1051027872. https://projecteuclid.org/euclid.aos/1051027872
References
- BARRON, A., BIRGÉ, L. and MASSART, P. (1999). Risk bounds for model selection via penalization. Probab. Theory Related Fields 113 301-413. Mathematical Reviews (MathSciNet): MR2000k:62049
Zentralblatt MATH: 0946.62036
Digital Object Identifier: doi:10.1007/s004400050210 - BENJAMINI, Y. and HOCHBERG, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 289-300.
- BERGER, J. O. (1980). A robust generalized Bay es estimator and confidence region for a multivariate normal mean. Ann. Statist. 8 716-761. Mathematical Reviews (MathSciNet): MR572619
Zentralblatt MATH: 0464.62026
Digital Object Identifier: doi:10.1214/aos/1176345068
Project Euclid: euclid.aos/1176345068 - BERGER, J. O. (1985). Statistical Decision Theory and Bayesian Analy sis, 2nd ed. Springer, New York.
- BREIMAN, L., FRIEDMAN, J. H., OLSHEN, R. A. and STONE, C. J. (1984). Classification and Regression Trees. Wadsworth, Belmont, CA.
- BROWN, L. D. (1966). On the admissibility of invariant estimators of one or more location parameters. Ann. Math. Statist. 37 1087-1136. Zentralblatt MATH: 0156.39401
Mathematical Reviews (MathSciNet): MR216647
Digital Object Identifier: doi:10.1214/aoms/1177699259
Project Euclid: euclid.aoms/1177699259 - CARLIN, B. P. and LOUIS, T. A. (1996). Bay es and Empirical Bay es Methods for Data Analy sis. Chapman and Hall, New York. Mathematical Reviews (MathSciNet): MR1427749
- CARROLL, R. J. and HALL, P. (1988). Optimal rates of convergence for deconvolving a density. J. Amer. Statist. Assoc. 83 1184-1186. Zentralblatt MATH: 0673.62033
Mathematical Reviews (MathSciNet): MR997599
Digital Object Identifier: doi:10.2307/2290153
JSTOR: links.jstor.org - CARTER, G. and ROLPH, J. (1974). Empirical Bay es methods applied to estimating fire alarm probabilities. J. Amer. Statist. Assoc. 69 880-885.
- COGBURN, R. (1965). On the estimation of a multivariate location parameter with squared error loss. In Bernoulli, Bay es, and Laplace Anniversary Volume (J. Ney man and L. Le Cam, eds.) 24-29. Springer, Berlin.
- COGBURN, R. (1967). Stringent solutions to statistical decision problems. Ann. Math. Statist. 38 447-463. Mathematical Reviews (MathSciNet): MR34:8579
Zentralblatt MATH: 0155.25203
Digital Object Identifier: doi:10.1214/aoms/1177698960
Project Euclid: euclid.aoms/1177698960 - COPAS, J. B. (1969). Compound decisions and empirical Bay es (with discussion). J. Roy. Statist. Soc. Ser. B 31 397-425.
- COPAS, J. B. (1972). Empirical Bay es methods and the repeated use of a standard. Biometrika 59 349-360. Mathematical Reviews (MathSciNet): MR49:1655
Zentralblatt MATH: 0238.62007
Digital Object Identifier: doi:10.1093/biomet/59.2.349
JSTOR: links.jstor.org - COVER, T. (1968). Learning in pattern recognition. In Methodologies of Pattern Recognition (S. Watanabe, ed.) 111-132. Academic Press, New York.
- COVER, T. (1991). Universal portfolios. Math. Finance 1 1-29. Mathematical Reviews (MathSciNet): MR92c:90023
Zentralblatt MATH: 0900.90052
Digital Object Identifier: doi:10.1111/j.1467-9965.1991.tb00002.x - DATTA, S. (1991). Asy mptotic optimality of Bay es compound estimators in compact exponential families. Ann. Statist. 19 354-365. Mathematical Reviews (MathSciNet): MR92e:62018
Zentralblatt MATH: 0741.62004
Digital Object Identifier: doi:10.1214/aos/1176347987
Project Euclid: euclid.aos/1176347987 - DEELY, J. J. and KRUSE, R. L. (1968). Construction of sequences estimating the mixing distribution. Ann. Math. Statist. 39 286-288. Mathematical Reviews (MathSciNet): MR36:3437
Zentralblatt MATH: 0174.22302
Digital Object Identifier: doi:10.1214/aoms/1177698536
Project Euclid: euclid.aoms/1177698536 - DEMPSTER, A. P., LAIRD, N. M. and RUBIN, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc. Ser. B 39 1-38.
- DONOHO, D. L. and JOHNSTONE, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc. 90 1200-1224. Mathematical Reviews (MathSciNet): MR96k:62093
Zentralblatt MATH: 0869.62024
Digital Object Identifier: doi:10.2307/2291512
JSTOR: links.jstor.org - DONOHO, D. L., JOHNSTONE, I. M., KERKy ACHARIAN, G. and PICARD, D. (1995). Wavelet shrinkage: Asy mptopia? (with discussion). J. Roy. Statist. Soc. Ser. B 57 301-369.
- EFROMOVICH, S. (1999). Nonparametric Curve Estimation. Springer, New York. Mathematical Reviews (MathSciNet): MR2000k:62058
- EFROMOVICH, S. and PINSKER, M. S. (1984). An adaptive algorithm of nonparametric filtering. Autom. Remote Control 11 58-65.
- EFRON, B. (1996). Empirical Bay es methods for combining likelihoods. J. Amer. Statist. Assoc. 91 538-550. Mathematical Reviews (MathSciNet): MR97c:62018
Zentralblatt MATH: 0868.62018
Digital Object Identifier: doi:10.2307/2291646
JSTOR: links.jstor.org - EFRON, B. (2003). Robbins, empirical Bay es and microarray s. Ann. Statist. 31 366-378. Mathematical Reviews (MathSciNet): MR1983533
Zentralblatt MATH: 1038.62099
Digital Object Identifier: doi:10.1214/aos/1051027871
Project Euclid: euclid.aos/1051027871 - EFRON, B. and MORRIS, C. (1972a). Empirical Bay es on vector observations: An extension of Stein's method. Biometrika 59 335-347.Mathematical Reviews (MathSciNet): MR334386
Zentralblatt MATH: 0238.62072
Digital Object Identifier: doi:10.1093/biomet/59.2.335
JSTOR: links.jstor.org - EFRON, B. and MORRIS, C. (1972b). Limiting the risk of Bay es and empirical Bay es estimators. II. The empirical Bay es case. J. Amer. Statist. Assoc. 67 130-139. Mathematical Reviews (MathSciNet): MR323015
Zentralblatt MATH: 0231.62013
Digital Object Identifier: doi:10.2307/2284711
JSTOR: links.jstor.org - EFRON, B. and MORRIS, C. (1973a). Stein's estimation rule and its competitors-an empirical Bay es approach. J. Amer. Statist. Assoc. 68 117-130. Mathematical Reviews (MathSciNet): MR388597
Zentralblatt MATH: 0275.62005
Digital Object Identifier: doi:10.2307/2284155
JSTOR: links.jstor.org - EFRON, B. and MORRIS, C. (1973b). Combining possibly related estimation problems (with discussion). J. Roy. Statist. Soc. Ser. B 35 379-421.
- EFRON, B. and MORRIS, C. (1977). Stein's paradox in statistics. Sci. Amer. 236 119-127.
- EFRON, B., STOREY, J. and TIBSHIRANI, R. (2001). Microarray s, empirical Bay es methods, and false discovery rates. Technical report, Stanford Univ. Available online at http://wwwstat.stanford.edu/ tibs/research.html. URL: Link to item
- EFRON, B., TIBSHIRANI, R., STOREY, J. and TUSHER, V. (2001). Empirical Bay es analysis of a microarray experiment. J. Amer. Statist. Assoc. 96 1151-1160. Mathematical Reviews (MathSciNet): MR1946571
Zentralblatt MATH: 1073.62511
Digital Object Identifier: doi:10.1198/016214501753382129
JSTOR: links.jstor.org - FAN, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist. 19 1257-1272. Zentralblatt MATH: 0729.62033
Mathematical Reviews (MathSciNet): MR1126324
Digital Object Identifier: doi:10.1214/aos/1176348248
Project Euclid: euclid.aos/1176348248 - FAN, J. and GIJBELS, I. (1996). Local Poly nomial Modeling and Its Applications. Chapman and Hall, London.
- FINKELSTEIN, M. O., LEVIN, B. and ROBBINS, H. (1996a). Clinical and prophy lactic trials with assured new treatment for those at greater risk. I. A design proposal. Amer. J. Public Health 86 691-695.
- FINKELSTEIN, M. O., LEVIN, B. and ROBBINS, H. (1996b). Clinical and prophy lactic trials with assured new treatment for those at greater risk. II. Examples. Amer. J. Public Health 86 696-705.
- FOX, R. J. (1970). Estimating the empiric distribution function of certain parameter sequences. Ann. Math. Statist. 41 1845-1852. Zentralblatt MATH: 0237.62007
Mathematical Reviews (MathSciNet): MR273737
Digital Object Identifier: doi:10.1214/aoms/1177696685
Project Euclid: euclid.aoms/1177696685 - FRIEDMAN, J. H. (1991). Multivariate adaptive regression splines. Ann. Statist. 19 1-67. Zentralblatt MATH: 0765.62064
Mathematical Reviews (MathSciNet): MR1091842
Digital Object Identifier: doi:10.1214/aos/1176347963
Project Euclid: euclid.aos/1176347963 - GEORGE, E. I. (1986). Minimax multiple shrinkage estimation. Ann. Statist. 14 188-205. Mathematical Reviews (MathSciNet): MR87f:62101
Zentralblatt MATH: 0602.62041
Digital Object Identifier: doi:10.1214/aos/1176349849
Project Euclid: euclid.aos/1176349849 - GEORGE, E. I. and FOSTER, D. P. (2000). Calibration and empirical Bay es variable selection. Biometrika 87 731-747. Mathematical Reviews (MathSciNet): MR2001k:62007
Zentralblatt MATH: 01643823
Digital Object Identifier: doi:10.1093/biomet/87.4.731
JSTOR: links.jstor.org - GILLILAND, D. C. (1968). Sequential compound estimation. Ann. Math. Statist. 39 1890-1905. Mathematical Reviews (MathSciNet): MR44:2291
Zentralblatt MATH: 0177.46301
Digital Object Identifier: doi:10.1214/aoms/1177698019
Project Euclid: euclid.aoms/1177698019 - GILLILAND, D. C. and HANNAN, J. F. (1969). On an extended compound decision problem. Ann. Math. Statist. 40 1536-1541. Mathematical Reviews (MathSciNet): MR41:1160
Zentralblatt MATH: 0183.47803
Digital Object Identifier: doi:10.1214/aoms/1177697371
Project Euclid: euclid.aoms/1177697371 - GILLILAND, D. C., HANNAN, J. F. and HUANG, J. S. (1976). Asy mptotic solutions to the two state component compound decision problem, Bay es versus diffuse priors on proportions. Ann. Statist. 4 1101-1112. Mathematical Reviews (MathSciNet): MR56:6952
Digital Object Identifier: doi:10.1214/aos/1176343645
Project Euclid: euclid.aos/1176343645 - GOOD, I. J. (1953). On the population frequencies of species and the estimation of population parameters. Biometrika 40 237-264.
- HANNAN, J. F. (1957). Approximation to Bay es risk in repeated play. In Contributions to the Theory of Games (M. Dresher and A. W. Tucker, eds.) 3 97-139. Princeton Univ. Press.
- HANNAN, J. F. and ROBBINS, H. (1955). Asy mptotic solutions of the compound decision problem for two completely specified distributions. Ann. Math. Statist. 26 37-51. Mathematical Reviews (MathSciNet): MR16,730e
Zentralblatt MATH: 0064.38703
Digital Object Identifier: doi:10.1214/aoms/1177728591
Project Euclid: euclid.aoms/1177728591 - HANNAN, J. F. and VAN Ry ZIN, J. R. (1965). Rate of convergence in the compound decision problem for two completely specified distributions. Ann. Math. Statist. 36 1743-1752. Mathematical Reviews (MathSciNet): MR32:1813
Zentralblatt MATH: 0161.37901
Digital Object Identifier: doi:10.1214/aoms/1177699802
Project Euclid: euclid.aoms/1177699802 - HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. H. (2001). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York. Mathematical Reviews (MathSciNet): MR1851606
- HOADLEY, B. (1981). The quality management plan (QMP). Bell Sy stem Tech. J. 60 215-273.
- IBRAGIMOV, I. A. and KHASMINSKII, R. Z. (1981). Statistical Estimation: Asy mptotic Theory. Springer, New York. Mathematical Reviews (MathSciNet): MR620321
- JAMES, W. and STEIN, C. (1961). Estimation with quadratic loss. Proc. Fourth Berkeley Sy mp. Math. Statist. Probab. 1 361-379. Univ. California Press, Berkeley. Mathematical Reviews (MathSciNet): MR133191
- JOHNS, M. V. (1957). Non-parametric empirical Bay es procedures. Ann. Math. Statist. 28 649-669.Mathematical Reviews (MathSciNet): MR20:2824
Zentralblatt MATH: 0088.35304
Digital Object Identifier: doi:10.1214/aoms/1177706877
Project Euclid: euclid.aoms/1177706877 - JOHNS, M. V. (1961). An empirical Bay es approach to non-parametric two-way classification. In Studies in Item Analy sis and Prediction (H. Solomon, ed.) 221-232. Stanford Univ. Press.
- JOHNS, M. V. and VAN Ry ZIN, J. R. (1971). Convergence rates for empirical Bay es two-action problems. I. Discrete case. Ann. Math. Statist. 42 1521-1539. Mathematical Reviews (MathSciNet): MR303632
Zentralblatt MATH: 0267.62018
Digital Object Identifier: doi:10.1214/aoms/1177693151
Project Euclid: euclid.aoms/1177693151 - JOHNS, M. V. and VAN Ry ZIN, J. R. (1972). Convergence rates for empirical Bay es two-action problems. II. Continuous case. Ann. Math. Statist. 43 934-947. Mathematical Reviews (MathSciNet): MR303633
Zentralblatt MATH: 0249.62014
Digital Object Identifier: doi:10.1214/aoms/1177692557
Project Euclid: euclid.aoms/1177692557 - KAGAN, A. M. (1962). An empirical Bay es approach to the estimation problem. Dokl. Acad. Sci. U.S.S.R. 147 1020-1021. Mathematical Reviews (MathSciNet): MR144413
- KIEFER, J. and WOLFOWITZ, J. (1956). Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters. Ann. Math. Statist. 27 887-906. Mathematical Reviews (MathSciNet): MR19,189a
Zentralblatt MATH: 0073.14701
Digital Object Identifier: doi:10.1214/aoms/1177728066
Project Euclid: euclid.aoms/1177728066 - LEVIN, B., ROBBINS, H. and ZHANG, C.-H. (2002). Mathematical aspects of estimating two treatment effects and a common variance in an assured allocation design. J. Statist. Plann. Inference 108 255-262. Zentralblatt MATH: 01892381
Mathematical Reviews (MathSciNet): MR1947402
Digital Object Identifier: doi:10.1016/S0378-3758(02)00312-9 - LINDSAY, B. G. (1983). The geometry of mixture likelihoods: A general theory. Ann. Statist. 11 86-94. Mathematical Reviews (MathSciNet): MR85m:62008a
Zentralblatt MATH: 0512.62005
Digital Object Identifier: doi:10.1214/aos/1176346059
Project Euclid: euclid.aos/1176346059 - MARITZ, J. S. and LWIN, T. (1989). Empirical Bay es Methods, 2nd ed. Chapman and Hall, London. Mathematical Reviews (MathSciNet): MR1019835
- MARTZ, H. and KRUTCHKOFF, R. G. (1969). Empirical Bay es estimators in a multiple linear regression model. Biometrika 56 367-374.
- MEEDEN, G. (1972). Some admissible empirical Bay es procedures. Ann. Math. Statist. 43 96-101. Mathematical Reviews (MathSciNet): MR47:9750
Zentralblatt MATH: 0238.62008
Digital Object Identifier: doi:10.1214/aoms/1177692705
Project Euclid: euclid.aoms/1177692705 - MIy ASAWA, K. (1961). An empirical Bay es estimator of the mean of a normal population. Bull. Internat. Statist. Inst. 38 181-188. Mathematical Reviews (MathSciNet): MR27:4303
- MORRIS, C. N. (1983). Parametric empirical Bay es inference: Theory and applications. J. Amer. Statist. Assoc. 78 47-55. Mathematical Reviews (MathSciNet): MR696849
Zentralblatt MATH: 0506.62005
Digital Object Identifier: doi:10.2307/2287098
JSTOR: links.jstor.org - NEy MAN, J. (1962). Two breakthroughs in the theory of statistical decision-making. Rev. Internat. Statist. Inst. 30 11-27.
- OATEN, A. (1972). Approximation to Bay es risk in compound decision problems. Ann. Math. Statist. 43 1164-1184. Mathematical Reviews (MathSciNet): MR47:1168
Zentralblatt MATH: 0241.62005
Digital Object Identifier: doi:10.1214/aoms/1177692469
Project Euclid: euclid.aoms/1177692469 - O'BRy AN, T. E. (1976). Some empirical Bay es results in the case of component problems with varying sample sizes for discrete exponential families. Ann. Statist. 4 1290-1293. Mathematical Reviews (MathSciNet): MR56:1526
Zentralblatt MATH: 0346.62007
Digital Object Identifier: doi:10.1214/aos/1176343661
Project Euclid: euclid.aos/1176343661 - ROBBINS, H. (1951). Asy mptotically subminimax solutions of compound decision problems. Proc. Second Berkeley Sy mp. Math. Statist. Probab. 1 131-148. Univ. California Press, Berkeley.
- ROBBINS, H. (1956). An empirical Bay es approach to statistics. Proc. Third Berkeley Sy mp. Math. Statist. Probab. 1 157-163. Univ. California Press, Berkeley.
- ROBBINS, H. (1962). Some numerical results on a compound decision problem. In Recent Developments in Information and Decision Processes (R. E. Machol and P. Gray, eds.) 52-62. Macmillan, New York.
- ROBBINS, H. (1963). The empirical Bay es approach to testing statistical hy potheses. Rev. Internat. Statist. Inst. 31 195-208.
- ROBBINS, H. (1964). The empirical Bay es approach to statistical decision problems. Ann. Math. Statist. 35 1-20. Mathematical Reviews (MathSciNet): MR29:710
Zentralblatt MATH: 0138.12304
Digital Object Identifier: doi:10.1214/aoms/1177703729
Project Euclid: euclid.aoms/1177703729 - ROBBINS, H. (1968). Estimating the total probability of the unobserved outcomes of an experiment. Ann. Math. Statist. 39 256-257. Mathematical Reviews (MathSciNet): MR36:4747
Zentralblatt MATH: 0155.25801
Digital Object Identifier: doi:10.1214/aoms/1177698526
Project Euclid: euclid.aoms/1177698526 - ROBBINS, H. (1977). Prediction and estimation for the compound Poisson distribution. Proc. Nat. Acad. Sci. U.S.A. 74 2670-2671. Mathematical Reviews (MathSciNet): MR56:9761
Zentralblatt MATH: 0359.62014
Digital Object Identifier: doi:10.1073/pnas.74.7.2670
JSTOR: links.jstor.org - ROBBINS, H. (1980a). Estimation and prediction for mixtures of the exponential distribution. Proc. Nat. Acad. Sci. U.S.A. 77 2382-2383. Mathematical Reviews (MathSciNet): MR570413
Zentralblatt MATH: 0462.62026
Digital Object Identifier: doi:10.1073/pnas.77.5.2382
JSTOR: links.jstor.org - ROBBINS, H. (1980b). An empirical Bay es estimation problem. Proc. Nat. Acad. Sci. U.S.A. 77 6988-6989.Mathematical Reviews (MathSciNet): MR603064
Zentralblatt MATH: 0456.62029
Digital Object Identifier: doi:10.1073/pnas.77.12.6988
JSTOR: links.jstor.org - ROBBINS, H. (1982). Estimating many variances. In Statistical Decision Theory and Related Topics III (S. S. Gupta, ed.) 2 251-261. Academic Press, New York.
- ROBBINS, H. (1983). Some thoughts on empirical Bay es estimation. Ann. Statist. 11 713-723. Mathematical Reviews (MathSciNet): MR85a:62012
Zentralblatt MATH: 0522.62024
Digital Object Identifier: doi:10.1214/aos/1176346239
Project Euclid: euclid.aos/1176346239 - ROBBINS, H. (1985). Linear empirical Bay es estimation of means and variances. Proc. Nat. Acad. Sci. U.S.A. 82 1571-1574. Mathematical Reviews (MathSciNet): MR86f:62017
Zentralblatt MATH: 0559.62034
Digital Object Identifier: doi:10.1073/pnas.82.6.1571
JSTOR: links.jstor.org - ROBBINS, H. (1988). The u, v method of estimation. In Statistical Decision Theory and Related Topics IV (S. S. Gupta and J. O. Berger, eds.) 1 265-270. Springer, New York. Mathematical Reviews (MathSciNet): MR89a:62070
- ROBBINS, H. and SAMUEL, E. (1962). Testing statistical hy potheses; the compound approach. In Recent Developments in Information and Decision Processes (R. E. Machol and P. Gray, eds.) 63-70. Macmillan, New York.
- ROBBINS, H. and ZHANG, C.-H. (1988). Estimating a treatment effect under biased sampling. Proc. Nat. Acad. Sci. U.S.A. 85 3670-3672. Mathematical Reviews (MathSciNet): MR89f:62089
Zentralblatt MATH: 0639.62098
Digital Object Identifier: doi:10.1073/pnas.85.11.3670
JSTOR: links.jstor.org - ROBBINS, H. and ZHANG, C.-H. (1989). Estimating the superiority of a drug to a placebo when all and only those patients at risk are treated with the drug. Proc. Nat. Acad. Sci. U.S.A. 86 3003-3005. Mathematical Reviews (MathSciNet): MR90g:62056
Zentralblatt MATH: 0665.62108
Digital Object Identifier: doi:10.1073/pnas.86.9.3003
JSTOR: links.jstor.org - ROBBINS, H. and ZHANG, C.-H. (1991). Estimating a multiplicative treatment effect under biased allocation. Biometrika 78 349-354. Mathematical Reviews (MathSciNet): MR92h:62040
Zentralblatt MATH: 0735.62031
Digital Object Identifier: doi:10.1093/biomet/78.2.349
JSTOR: links.jstor.org - ROBBINS, H. and ZHANG, C.-H. (2000). Efficiency of the u, v method of estimation. Proc. Nat. Acad. Sci. U.S.A. 97 12976-12979. Mathematical Reviews (MathSciNet): MR2001m:62035
Zentralblatt MATH: 0968.62030
Digital Object Identifier: doi:10.1073/pnas.97.24.12976 - RUBIN, D. (1980). Using empirical Bay es techniques in the law school validity studies (with discussion). J. Amer. Statist. Assoc. 75 801-827. Mathematical Reviews (MathSciNet): MR590687
Zentralblatt MATH: 0444.62089
Digital Object Identifier: doi:10.2307/2287648 - RUTHERFORD, J. R. and KRUTCHKOFF, R. G. (1967). The empirical Bay es approach: Estimating the prior distribution. Biometrika 54 326-328.
- SAMUEL, E. (1963a). Asy mptotic solutions of the sequential compound decision problem. Ann. Math. Statist. 34 1079-1094. Mathematical Reviews (MathSciNet): MR173340
Zentralblatt MATH: 0202.49102
Digital Object Identifier: doi:10.1214/aoms/1177704032
Project Euclid: euclid.aoms/1177704032 - SAMUEL, E. (1963b). An empirical Bay es approach to the testing of certain parametric hy potheses. Ann. Math. Statist. 34 1370-1385. Mathematical Reviews (MathSciNet): MR178554
Zentralblatt MATH: 0202.49304
Digital Object Identifier: doi:10.1214/aoms/1177703870
Project Euclid: euclid.aoms/1177703870 - SAMUEL, E. (1964). Convergence of the losses of certain decision rules for the sequential compound decision problem. Ann. Math. Statist. 35 1606-1621. Mathematical Reviews (MathSciNet): MR31:5302
Zentralblatt MATH: 0134.35903
Digital Object Identifier: doi:10.1214/aoms/1177700385
Project Euclid: euclid.aoms/1177700385 - SAMUEL, E. (1965). Sequential compound estimators. Ann. Math. Statist. 36 879-889. Mathematical Reviews (MathSciNet): MR32:537
Zentralblatt MATH: 0147.17903
Digital Object Identifier: doi:10.1214/aoms/1177700060
Project Euclid: euclid.aoms/1177700060 - SIMAR, L. (1976). Maximum likelihood estimation of a compound Poisson process. Ann. Statist. 4 1200-1209. Mathematical Reviews (MathSciNet): MR55:1603
Zentralblatt MATH: 0362.62095
Digital Object Identifier: doi:10.1214/aos/1176343651
Project Euclid: euclid.aos/1176343651 - SINGH, R. S. (1979). Empirical Bay es estimation in Lebesgue exponential families with rates near the best possible rate. Ann. Statist. 7 890-902. Mathematical Reviews (MathSciNet): MR532252
Zentralblatt MATH: 0411.62019
Digital Object Identifier: doi:10.1214/aos/1176344738
Project Euclid: euclid.aos/1176344738 - STEIN, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. Proc. Third Berkeley Sy mp. Math. Statist. Probab. 1 197-206. Univ. California Press, Berkeley.
- STONE, C. J. (1994). The use of poly nomial splines and their tensor products in multivariate function estimation. Ann. Statist. 22 118-171. Mathematical Reviews (MathSciNet): MR1272079
Zentralblatt MATH: 0827.62038
Digital Object Identifier: doi:10.1214/aos/1176325361
Project Euclid: euclid.aos/1176325361 - STRAWDERMAN, W. E. (1971). Proper Bay es minimax estimators of the multivariate normal mean. Ann. Math. Statist. 42 385-388. Mathematical Reviews (MathSciNet): MR53:1794
Zentralblatt MATH: 0222.62006
Digital Object Identifier: doi:10.1214/aoms/1177693528
Project Euclid: euclid.aoms/1177693528 - SUSARLA, V. (1974). Rate of convergence in the sequence-compound squared-distance loss estimation problem for a family of m-variate normal distributions. Ann. Statist. 2 118- 133. Mathematical Reviews (MathSciNet): MR54:6342
Zentralblatt MATH: 0275.62007
Digital Object Identifier: doi:10.1214/aos/1176342618
Project Euclid: euclid.aos/1176342618 - SUSARLA, V. and VAN Ry ZIN, J. R. (1978). Empirical Bay es estimation of a distribution (survival) function from right-censored observations. Ann. Statist. 6 740-754. Mathematical Reviews (MathSciNet): MR81h:62016
Zentralblatt MATH: 0378.62006
Digital Object Identifier: doi:10.1214/aos/1176344249
Project Euclid: euclid.aos/1176344249 - TEICHER, H. (1961). Identifiability of mixtures. Ann. Math. Statist. 32 244-248. Mathematical Reviews (MathSciNet): MR22:11426
Digital Object Identifier: doi:10.1214/aoms/1177705155
Project Euclid: euclid.aoms/1177705155 - TEICHER, H. (1963). Identifiability of finite mixtures. Ann. Math. Statist. 34 1265-1269. Mathematical Reviews (MathSciNet): MR27:5310
Digital Object Identifier: doi:10.1214/aoms/1177703862
Project Euclid: euclid.aoms/1177703862 - VAN HOUWELINGEN, H. C. and THOROGOOD, J. (1995). Construction, validation and updating of a prognostic model for kidney graft survival. Statistics in Medicine 14 1999-2008.
- VAN HOUWELINGEN, J. C. (1977). Monotonizing empirical Bay es estimators for a class of discrete distributions with monotone likelihood ratio. Statist. Neerlandica 31 95-104. Mathematical Reviews (MathSciNet): MR57:4388
Digital Object Identifier: doi:10.1111/j.1467-9574.1977.tb00756.x - VAN Ry ZIN, J. R. (1966a). The sequential compound decision problem with m× n finite loss matrix. Ann. Math. Statist. 37 954-975.
- VAN Ry ZIN, J. R. (1966b). Repetitive play in finite statistical games with unknown distributions. Ann. Math. Statist. 37 976-994. Mathematical Reviews (MathSciNet): MR196882
Zentralblatt MATH: 0173.47802
Digital Object Identifier: doi:10.1214/aoms/1177699377
Project Euclid: euclid.aoms/1177699377 - VAN Ry ZIN, J. R. and SUSARLA, V. (1977). On the empirical Bay es approach to multiple decision problems. Ann. Statist. 5 172-181. Mathematical Reviews (MathSciNet): MR55:4455
Zentralblatt MATH: 0379.62009
Digital Object Identifier: doi:10.1214/aos/1176343750
Project Euclid: euclid.aos/1176343750 - VARDEMAN, S. B. (1978). Admissible solutions of finite state sequence compound decision problems. Ann. Statist. 6 673-679. Mathematical Reviews (MathSciNet): MR58:3146
Zentralblatt MATH: 0388.62010
Digital Object Identifier: doi:10.1214/aos/1176344211
Project Euclid: euclid.aos/1176344211 - WAHBA, G. (1990). Spline Models for Observational Data. SIAM, Philadelphia.
- WIND, S. L. (1973). An empirical Bay es approach to multiple linear regression. Ann. Statist. 1 93- 103. Mathematical Reviews (MathSciNet): MR49:8227
Zentralblatt MATH: 0253.62007
Digital Object Identifier: doi:10.1214/aos/1193342385
Project Euclid: euclid.aos/1193342385 - ZASLAVSKY, A. M. (1993). Combining census, dual-sy stem, and evaluation study data to estimate population shares. J. Amer. Statist. Assoc. 88 1092-1105.
- ZHANG, C.-H. (1990). Fourier methods for estimating mixing densities and distributions. Ann. Statist. 18 806-831. Zentralblatt MATH: 0778.62037
Mathematical Reviews (MathSciNet): MR1056338
Digital Object Identifier: doi:10.1214/aos/1176347627
Project Euclid: euclid.aos/1176347627 - ZHANG, C.-H. (1995). On estimating mixing densities in discrete exponential family models. Ann. Statist. 23 929-945. Zentralblatt MATH: 0841.62027
Mathematical Reviews (MathSciNet): MR1345207
Digital Object Identifier: doi:10.1214/aos/1176324629
Project Euclid: euclid.aos/1176324629 - ZHANG, C.-H. (1997). Empirical Bay es and compound estimation of normal means. Statist. Sinica 7 181-193.
- ZHANG, C.-H. (2000). General empirical Bay es wavelet methods. Technical Report 2000-007, Dept. Statist., Rutgers Univ., Piscataway, NJ.
- HILL CENTER, BUSCH CAMPUS
- PISCATAWAY, NEW JERSEY 08854 E-MAIL: czhang@stat.rutgers.edu

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- An Empirical Bayes Approach to the Testing of Certain Parametric Hypotheses
Samuel, Ester, The Annals of Mathematical Statistics, 1963 - Admissible Solutions of Finite State Sequence Compound Decision Problems
Vardeman, Stephen B., The Annals of Statistics, 1978 - On Empirical Bayes Testing with Sequential Components
Karunamuni, Rohana J., The Annals of Statistics, 1988
- An Empirical Bayes Approach to the Testing of Certain Parametric Hypotheses
Samuel, Ester, The Annals of Mathematical Statistics, 1963 - Admissible Solutions of Finite State Sequence Compound Decision Problems
Vardeman, Stephen B., The Annals of Statistics, 1978 - On Empirical Bayes Testing with Sequential Components
Karunamuni, Rohana J., The Annals of Statistics, 1988 - A Useful Empirical Bayes Identity
Cressie, Noel, The Annals of Statistics, 1982 - Comment: Empirical Bayes, Compound Decisions and Exchangeability
Greenshtein, Eitan and Ritov, Ya’acov, Statistical Science, 2019 - Sequential Compound Estimators
Samuel, Ester, The Annals of Mathematical Statistics, 1965 - Asymptotically optimal and admissible decision rules in compound compact Gaussian shift experiments
Majumdar, Suman, The Annals of Statistics, 1996 - On the Convergence Rates of Empirical Bayes Rules for Two-Action Problems: Discrete Case
Liang, TaChen, The Annals of Statistics, 1988 - Bayes Solutions of Sequential Decision Problems
Wald, A. and Wolfowitz, J., The Annals of Mathematical Statistics, 1950 - The Sequential Compound Decision Problem with $m \times n$ Finite Loss Matrix
Ryzin, J. Van, The Annals of Mathematical Statistics, 1966