The Annals of Statistics

Compound decision theory and empirical Bayes methods: invited paper

Cun-Hui Zhang

Full-text: Open access

Article information

Source
Ann. Statist., Volume 31, Number 2 (2003), 379-390.

Dates
First available in Project Euclid: 22 April 2003

Permanent link to this document
https://projecteuclid.org/euclid.aos/1051027872

Digital Object Identifier
doi:10.1214/aos/1051027872

Mathematical Reviews number (MathSciNet)
MR1983534

Subjects
Primary: 62C12: Empirical decision procedures; empirical Bayes procedures 62C25: Compound decision problems
Secondary: 62G08: Nonparametric regression 62G05: Estimation

Keywords
Empirical Bayes compound decision theory nonparametric inference prediction

Citation

Zhang, Cun-Hui. Compound decision theory and empirical Bayes methods: invited paper. Ann. Statist. 31 (2003), no. 2, 379--390. doi:10.1214/aos/1051027872. https://projecteuclid.org/euclid.aos/1051027872


Export citation

References

  • BARRON, A., BIRGÉ, L. and MASSART, P. (1999). Risk bounds for model selection via penalization. Probab. Theory Related Fields 113 301-413.
  • BENJAMINI, Y. and HOCHBERG, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 289-300.
  • BERGER, J. O. (1980). A robust generalized Bay es estimator and confidence region for a multivariate normal mean. Ann. Statist. 8 716-761.
  • BERGER, J. O. (1985). Statistical Decision Theory and Bayesian Analy sis, 2nd ed. Springer, New York.
  • BREIMAN, L., FRIEDMAN, J. H., OLSHEN, R. A. and STONE, C. J. (1984). Classification and Regression Trees. Wadsworth, Belmont, CA.
  • BROWN, L. D. (1966). On the admissibility of invariant estimators of one or more location parameters. Ann. Math. Statist. 37 1087-1136.
  • CARLIN, B. P. and LOUIS, T. A. (1996). Bay es and Empirical Bay es Methods for Data Analy sis. Chapman and Hall, New York.
  • CARROLL, R. J. and HALL, P. (1988). Optimal rates of convergence for deconvolving a density. J. Amer. Statist. Assoc. 83 1184-1186.
  • CARTER, G. and ROLPH, J. (1974). Empirical Bay es methods applied to estimating fire alarm probabilities. J. Amer. Statist. Assoc. 69 880-885.
  • COGBURN, R. (1965). On the estimation of a multivariate location parameter with squared error loss. In Bernoulli, Bay es, and Laplace Anniversary Volume (J. Ney man and L. Le Cam, eds.) 24-29. Springer, Berlin.
  • COGBURN, R. (1967). Stringent solutions to statistical decision problems. Ann. Math. Statist. 38 447-463.
  • COPAS, J. B. (1969). Compound decisions and empirical Bay es (with discussion). J. Roy. Statist. Soc. Ser. B 31 397-425.
  • COPAS, J. B. (1972). Empirical Bay es methods and the repeated use of a standard. Biometrika 59 349-360.
  • COVER, T. (1968). Learning in pattern recognition. In Methodologies of Pattern Recognition (S. Watanabe, ed.) 111-132. Academic Press, New York.
  • COVER, T. (1991). Universal portfolios. Math. Finance 1 1-29.
  • DATTA, S. (1991). Asy mptotic optimality of Bay es compound estimators in compact exponential families. Ann. Statist. 19 354-365.
  • DEELY, J. J. and KRUSE, R. L. (1968). Construction of sequences estimating the mixing distribution. Ann. Math. Statist. 39 286-288.
  • DEMPSTER, A. P., LAIRD, N. M. and RUBIN, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc. Ser. B 39 1-38.
  • DONOHO, D. L. and JOHNSTONE, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc. 90 1200-1224.
  • DONOHO, D. L., JOHNSTONE, I. M., KERKy ACHARIAN, G. and PICARD, D. (1995). Wavelet shrinkage: Asy mptopia? (with discussion). J. Roy. Statist. Soc. Ser. B 57 301-369.
  • EFROMOVICH, S. (1999). Nonparametric Curve Estimation. Springer, New York.
  • EFROMOVICH, S. and PINSKER, M. S. (1984). An adaptive algorithm of nonparametric filtering. Autom. Remote Control 11 58-65.
  • EFRON, B. (1996). Empirical Bay es methods for combining likelihoods. J. Amer. Statist. Assoc. 91 538-550.
  • EFRON, B. (2003). Robbins, empirical Bay es and microarray s. Ann. Statist. 31 366-378.
  • EFRON, B. and MORRIS, C. (1972a). Empirical Bay es on vector observations: An extension of Stein's method. Biometrika 59 335-347.
  • EFRON, B. and MORRIS, C. (1972b). Limiting the risk of Bay es and empirical Bay es estimators. II. The empirical Bay es case. J. Amer. Statist. Assoc. 67 130-139.
  • EFRON, B. and MORRIS, C. (1973a). Stein's estimation rule and its competitors-an empirical Bay es approach. J. Amer. Statist. Assoc. 68 117-130.
  • EFRON, B. and MORRIS, C. (1973b). Combining possibly related estimation problems (with discussion). J. Roy. Statist. Soc. Ser. B 35 379-421.
  • EFRON, B. and MORRIS, C. (1977). Stein's paradox in statistics. Sci. Amer. 236 119-127.
  • EFRON, B., STOREY, J. and TIBSHIRANI, R. (2001). Microarray s, empirical Bay es methods, and false discovery rates. Technical report, Stanford Univ. Available online at http://wwwstat.stanford.edu/ tibs/research.html.
  • EFRON, B., TIBSHIRANI, R., STOREY, J. and TUSHER, V. (2001). Empirical Bay es analysis of a microarray experiment. J. Amer. Statist. Assoc. 96 1151-1160.
  • FAN, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist. 19 1257-1272.
  • FAN, J. and GIJBELS, I. (1996). Local Poly nomial Modeling and Its Applications. Chapman and Hall, London.
  • FINKELSTEIN, M. O., LEVIN, B. and ROBBINS, H. (1996a). Clinical and prophy lactic trials with assured new treatment for those at greater risk. I. A design proposal. Amer. J. Public Health 86 691-695.
  • FINKELSTEIN, M. O., LEVIN, B. and ROBBINS, H. (1996b). Clinical and prophy lactic trials with assured new treatment for those at greater risk. II. Examples. Amer. J. Public Health 86 696-705.
  • FOX, R. J. (1970). Estimating the empiric distribution function of certain parameter sequences. Ann. Math. Statist. 41 1845-1852.
  • FRIEDMAN, J. H. (1991). Multivariate adaptive regression splines. Ann. Statist. 19 1-67.
  • GEORGE, E. I. (1986). Minimax multiple shrinkage estimation. Ann. Statist. 14 188-205.
  • GEORGE, E. I. and FOSTER, D. P. (2000). Calibration and empirical Bay es variable selection. Biometrika 87 731-747.
  • GILLILAND, D. C. (1968). Sequential compound estimation. Ann. Math. Statist. 39 1890-1905.
  • GILLILAND, D. C. and HANNAN, J. F. (1969). On an extended compound decision problem. Ann. Math. Statist. 40 1536-1541.
  • GILLILAND, D. C., HANNAN, J. F. and HUANG, J. S. (1976). Asy mptotic solutions to the two state component compound decision problem, Bay es versus diffuse priors on proportions. Ann. Statist. 4 1101-1112.
  • GOOD, I. J. (1953). On the population frequencies of species and the estimation of population parameters. Biometrika 40 237-264.
  • HANNAN, J. F. (1957). Approximation to Bay es risk in repeated play. In Contributions to the Theory of Games (M. Dresher and A. W. Tucker, eds.) 3 97-139. Princeton Univ. Press.
  • HANNAN, J. F. and ROBBINS, H. (1955). Asy mptotic solutions of the compound decision problem for two completely specified distributions. Ann. Math. Statist. 26 37-51.
  • HANNAN, J. F. and VAN Ry ZIN, J. R. (1965). Rate of convergence in the compound decision problem for two completely specified distributions. Ann. Math. Statist. 36 1743-1752.
  • HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. H. (2001). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York.
  • HOADLEY, B. (1981). The quality management plan (QMP). Bell Sy stem Tech. J. 60 215-273.
  • IBRAGIMOV, I. A. and KHASMINSKII, R. Z. (1981). Statistical Estimation: Asy mptotic Theory. Springer, New York.
  • JAMES, W. and STEIN, C. (1961). Estimation with quadratic loss. Proc. Fourth Berkeley Sy mp. Math. Statist. Probab. 1 361-379. Univ. California Press, Berkeley.
  • JOHNS, M. V. (1957). Non-parametric empirical Bay es procedures. Ann. Math. Statist. 28 649-669.
  • JOHNS, M. V. (1961). An empirical Bay es approach to non-parametric two-way classification. In Studies in Item Analy sis and Prediction (H. Solomon, ed.) 221-232. Stanford Univ. Press.
  • JOHNS, M. V. and VAN Ry ZIN, J. R. (1971). Convergence rates for empirical Bay es two-action problems. I. Discrete case. Ann. Math. Statist. 42 1521-1539.
  • JOHNS, M. V. and VAN Ry ZIN, J. R. (1972). Convergence rates for empirical Bay es two-action problems. II. Continuous case. Ann. Math. Statist. 43 934-947.
  • KAGAN, A. M. (1962). An empirical Bay es approach to the estimation problem. Dokl. Acad. Sci. U.S.S.R. 147 1020-1021.
  • KIEFER, J. and WOLFOWITZ, J. (1956). Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters. Ann. Math. Statist. 27 887-906.
  • LEVIN, B., ROBBINS, H. and ZHANG, C.-H. (2002). Mathematical aspects of estimating two treatment effects and a common variance in an assured allocation design. J. Statist. Plann. Inference 108 255-262.
  • LINDSAY, B. G. (1983). The geometry of mixture likelihoods: A general theory. Ann. Statist. 11 86-94.
  • MARITZ, J. S. and LWIN, T. (1989). Empirical Bay es Methods, 2nd ed. Chapman and Hall, London.
  • MARTZ, H. and KRUTCHKOFF, R. G. (1969). Empirical Bay es estimators in a multiple linear regression model. Biometrika 56 367-374.
  • MEEDEN, G. (1972). Some admissible empirical Bay es procedures. Ann. Math. Statist. 43 96-101.
  • MIy ASAWA, K. (1961). An empirical Bay es estimator of the mean of a normal population. Bull. Internat. Statist. Inst. 38 181-188.
  • MORRIS, C. N. (1983). Parametric empirical Bay es inference: Theory and applications. J. Amer. Statist. Assoc. 78 47-55.
  • NEy MAN, J. (1962). Two breakthroughs in the theory of statistical decision-making. Rev. Internat. Statist. Inst. 30 11-27.
  • OATEN, A. (1972). Approximation to Bay es risk in compound decision problems. Ann. Math. Statist. 43 1164-1184.
  • O'BRy AN, T. E. (1976). Some empirical Bay es results in the case of component problems with varying sample sizes for discrete exponential families. Ann. Statist. 4 1290-1293.
  • ROBBINS, H. (1951). Asy mptotically subminimax solutions of compound decision problems. Proc. Second Berkeley Sy mp. Math. Statist. Probab. 1 131-148. Univ. California Press, Berkeley.
  • ROBBINS, H. (1956). An empirical Bay es approach to statistics. Proc. Third Berkeley Sy mp. Math. Statist. Probab. 1 157-163. Univ. California Press, Berkeley.
  • ROBBINS, H. (1962). Some numerical results on a compound decision problem. In Recent Developments in Information and Decision Processes (R. E. Machol and P. Gray, eds.) 52-62. Macmillan, New York.
  • ROBBINS, H. (1963). The empirical Bay es approach to testing statistical hy potheses. Rev. Internat. Statist. Inst. 31 195-208.
  • ROBBINS, H. (1964). The empirical Bay es approach to statistical decision problems. Ann. Math. Statist. 35 1-20.
  • ROBBINS, H. (1968). Estimating the total probability of the unobserved outcomes of an experiment. Ann. Math. Statist. 39 256-257.
  • ROBBINS, H. (1977). Prediction and estimation for the compound Poisson distribution. Proc. Nat. Acad. Sci. U.S.A. 74 2670-2671.
  • ROBBINS, H. (1980a). Estimation and prediction for mixtures of the exponential distribution. Proc. Nat. Acad. Sci. U.S.A. 77 2382-2383.
  • ROBBINS, H. (1980b). An empirical Bay es estimation problem. Proc. Nat. Acad. Sci. U.S.A. 77 6988-6989.
  • ROBBINS, H. (1982). Estimating many variances. In Statistical Decision Theory and Related Topics III (S. S. Gupta, ed.) 2 251-261. Academic Press, New York.
  • ROBBINS, H. (1983). Some thoughts on empirical Bay es estimation. Ann. Statist. 11 713-723.
  • ROBBINS, H. (1985). Linear empirical Bay es estimation of means and variances. Proc. Nat. Acad. Sci. U.S.A. 82 1571-1574.
  • ROBBINS, H. (1988). The u, v method of estimation. In Statistical Decision Theory and Related Topics IV (S. S. Gupta and J. O. Berger, eds.) 1 265-270. Springer, New York.
  • ROBBINS, H. and SAMUEL, E. (1962). Testing statistical hy potheses; the compound approach. In Recent Developments in Information and Decision Processes (R. E. Machol and P. Gray, eds.) 63-70. Macmillan, New York.
  • ROBBINS, H. and ZHANG, C.-H. (1988). Estimating a treatment effect under biased sampling. Proc. Nat. Acad. Sci. U.S.A. 85 3670-3672.
  • ROBBINS, H. and ZHANG, C.-H. (1989). Estimating the superiority of a drug to a placebo when all and only those patients at risk are treated with the drug. Proc. Nat. Acad. Sci. U.S.A. 86 3003-3005.
  • ROBBINS, H. and ZHANG, C.-H. (1991). Estimating a multiplicative treatment effect under biased allocation. Biometrika 78 349-354.
  • ROBBINS, H. and ZHANG, C.-H. (2000). Efficiency of the u, v method of estimation. Proc. Nat. Acad. Sci. U.S.A. 97 12976-12979.
  • RUBIN, D. (1980). Using empirical Bay es techniques in the law school validity studies (with discussion). J. Amer. Statist. Assoc. 75 801-827.
  • RUTHERFORD, J. R. and KRUTCHKOFF, R. G. (1967). The empirical Bay es approach: Estimating the prior distribution. Biometrika 54 326-328.
  • SAMUEL, E. (1963a). Asy mptotic solutions of the sequential compound decision problem. Ann. Math. Statist. 34 1079-1094.
  • SAMUEL, E. (1963b). An empirical Bay es approach to the testing of certain parametric hy potheses. Ann. Math. Statist. 34 1370-1385.
  • SAMUEL, E. (1964). Convergence of the losses of certain decision rules for the sequential compound decision problem. Ann. Math. Statist. 35 1606-1621.
  • SAMUEL, E. (1965). Sequential compound estimators. Ann. Math. Statist. 36 879-889.
  • SIMAR, L. (1976). Maximum likelihood estimation of a compound Poisson process. Ann. Statist. 4 1200-1209.
  • SINGH, R. S. (1979). Empirical Bay es estimation in Lebesgue exponential families with rates near the best possible rate. Ann. Statist. 7 890-902.
  • STEIN, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. Proc. Third Berkeley Sy mp. Math. Statist. Probab. 1 197-206. Univ. California Press, Berkeley.
  • STONE, C. J. (1994). The use of poly nomial splines and their tensor products in multivariate function estimation. Ann. Statist. 22 118-171.
  • STRAWDERMAN, W. E. (1971). Proper Bay es minimax estimators of the multivariate normal mean. Ann. Math. Statist. 42 385-388.
  • SUSARLA, V. (1974). Rate of convergence in the sequence-compound squared-distance loss estimation problem for a family of m-variate normal distributions. Ann. Statist. 2 118- 133.
  • SUSARLA, V. and VAN Ry ZIN, J. R. (1978). Empirical Bay es estimation of a distribution (survival) function from right-censored observations. Ann. Statist. 6 740-754.
  • TEICHER, H. (1961). Identifiability of mixtures. Ann. Math. Statist. 32 244-248.
  • TEICHER, H. (1963). Identifiability of finite mixtures. Ann. Math. Statist. 34 1265-1269.
  • VAN HOUWELINGEN, H. C. and THOROGOOD, J. (1995). Construction, validation and updating of a prognostic model for kidney graft survival. Statistics in Medicine 14 1999-2008.
  • VAN HOUWELINGEN, J. C. (1977). Monotonizing empirical Bay es estimators for a class of discrete distributions with monotone likelihood ratio. Statist. Neerlandica 31 95-104.
  • VAN Ry ZIN, J. R. (1966a). The sequential compound decision problem with m× n finite loss matrix. Ann. Math. Statist. 37 954-975.
  • VAN Ry ZIN, J. R. (1966b). Repetitive play in finite statistical games with unknown distributions. Ann. Math. Statist. 37 976-994.
  • VAN Ry ZIN, J. R. and SUSARLA, V. (1977). On the empirical Bay es approach to multiple decision problems. Ann. Statist. 5 172-181.
  • VARDEMAN, S. B. (1978). Admissible solutions of finite state sequence compound decision problems. Ann. Statist. 6 673-679.
  • WAHBA, G. (1990). Spline Models for Observational Data. SIAM, Philadelphia.
  • WIND, S. L. (1973). An empirical Bay es approach to multiple linear regression. Ann. Statist. 1 93- 103.
  • ZASLAVSKY, A. M. (1993). Combining census, dual-sy stem, and evaluation study data to estimate population shares. J. Amer. Statist. Assoc. 88 1092-1105.
  • ZHANG, C.-H. (1990). Fourier methods for estimating mixing densities and distributions. Ann. Statist. 18 806-831.
  • ZHANG, C.-H. (1995). On estimating mixing densities in discrete exponential family models. Ann. Statist. 23 929-945.
  • ZHANG, C.-H. (1997). Empirical Bay es and compound estimation of normal means. Statist. Sinica 7 181-193.
  • ZHANG, C.-H. (2000). General empirical Bay es wavelet methods. Technical Report 2000-007, Dept. Statist., Rutgers Univ., Piscataway, NJ.
  • HILL CENTER, BUSCH CAMPUS
  • PISCATAWAY, NEW JERSEY 08854 E-MAIL: czhang@stat.rutgers.edu