The Annals of Statistics

The partitioning principle: a powerful tool in multiple decision theory

H. Finner and K. Strassburger

Full-text: Open access


A first general principle and nowadays state of the art for the construction of powerful multiple test procedures controlling a multiple level $\alpha$ is the so-called closure principle. In this article we introduce another powerful tool for the construction of multiple decision procedures, especially for the construction of multiple test procedures and selection procedures. This tool is based on a partition of the parameter space and will be called partitioning principle (PP). In the first part of the paper we review basic concepts of multiple hypotheses testing and discuss a slight generalization of the current theory. In the second part we present various variants of the PP for the construction of multiple test procedures, these are a general PP (GPP), a weak PP (WPP) and a strong PP (SPP). It will be shown that, depending on the underlying decision problem, a PP may lead to more powerful test procedures than a formal application of the closure principle (FCP). Moreover, the more complex SPP may be more powerful than the WPP. Based on a duality between testing and selecting PPs can also be applied for the construction of more powerful selection procedures. In the third part of the paper FCP, WPP and SPP are applied and compared in some examples.

Article information

Ann. Statist., Volume 30, Number 4 (2002), 1194-1213.

First available in Project Euclid: 10 September 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62J15: Paired and multiple comparisons 62F07: Ranking and selection
Secondary: 62F03: Hypothesis testing 62C99: None of the above, but in this section

Directional errors formal closure principle multiple comparisons multiple level multiple hypotheses testing selection procedure step-down procedure step-up procedure strong partitioning principle weak partitioning principle


Finner, H.; Strassburger, K. The partitioning principle: a powerful tool in multiple decision theory. Ann. Statist. 30 (2002), no. 4, 1194--1213. doi:10.1214/aos/1031689023.

Export citation


  • FINNER, H. (1994a). Testing multiple hy potheses: General theory, specific problems, and relationships to other multiple decision procedures. Habilitationsschrift, FB IV Mathematik, Univ. Trier.
  • FINNER, H. (1994b). Two-sided tests and one-sided confidence bounds. Ann. Statist. 22 1502-1516.
  • FINNER, H. (1999). Stepwise multiple test procedures and control of directional errors. Ann. Statist. 27 274-289.
  • FINNER, H. and GIANI, G. (1994). Closed subset selection procedures for selecting good populations. J. Statist. Plann. Inference 38 179-199.
  • FINNER, H. and GIANI, G. (1996). Duality between multiple testing and selecting. J. Statist. Plann. Inference 54 201-227.
  • FINNER, H. and GIANI, G. (2001). Least favorable parameter configurations for a step-down subset selection procedure. Biom. J. 43 543-552.
  • FISHER, R. A. (1935). The Design of Experiments. Oliver and Boy d, London.
  • GABRIEL, K. R. (1969). Simultaneous test procedures-Some theory of multiple comparisons. Ann. Math. Statist. 40 224-250.
  • HARTLEY, H. O. (1955). Some recent developments in analysis of variance. Comm. Pure Appl. Math. 8 47-72.
  • HAy TER, A. J. and HSU, J. C. (1994). On the relationship between stepwise decision procedures and confidence sets. J. Amer. Statist. Assoc. 89 128-136.
  • HAy TER, A. J., MIWA, T. and LIU, W. (2000). Combining the advantages of one-sided and two-sided procedures for comparing several treatments with a control. J. Statist. Plann. Inference 86 81-99.
  • HOCHBERG, Y. and TAMHANE, A. C. (1987). Multiple Comparison Procedures. Wiley, New York.
  • HODGES, J. L., Jr. and LEHMANN, E. L. (1954). Testing the approximate validity of statistical hy potheses. J. Roy. Statist. Soc. Ser. B 16 261-268.
  • HSU, J. C. (1992). Stepwise multiple comparisons with the best. J. Statist. Plann. Inference 33 197- 204.
  • HSU, J. C. (1996). Multiple Comparisons: Theory and Methods. Chapman and Hall, London.
  • HSU, J. C. and BERGER, R. L. (1999). Stepwise confidence intervals without multiplicity adjustment for dose-response and toxicity studies. J. Amer. Statist. Assoc. 94 468-482.
  • KEULS, M. (1952). The use of the "Studentized range" in connection with an analysis of variance. Euphy tica 1 112-122.
  • LEHMANN, E. L. (1957a). A theory of some multiple decision problems, I. Ann. Math. Statist. 28 1-25.
  • LEHMANN, E. L. (1957b). A theory of some multiple decision problems, II. Ann. Math. Statist. 28 547-572.
  • MARCUS, R., PERITZ, E. and GABRIEL, K. R. (1976). On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63 655-660.
  • MILLER, R. G., JR. (1966). Simultaneous Statistical Inference. McGraw-Hill, New York.
  • MILLER, R. G., JR. (1981). Simultaneous Statistical Inference, 2nd ed. Springer, New York.
  • MIWA, T. and HAy TER, A. J. (1999). Combining the advantages of one-sided and two-sided test procedures for comparing several treatment effects. J. Amer. Statist. Assoc. 94 302-307.
  • NAIK, U. D. (1975). Some selection rules for comparing p processes with a standard. Comm. Statist. 4 519-535.
  • NAIK, U. D. (1977). Some subset selection problems. Comm. Statist. Theory Methods A6 955-966.
  • NEWMAN, D. (1939). The distribution of range in samples from a normal population, expressed in terms of an independent estimate of standard deviation. Biometrika 31 20-30.
  • SHAFFER, J. P. (1980). Control of directional errors with stagewise multiple test procedures. Ann. Statist. 8 1342-1347.
  • SONNEMANN, E. (1982). Allgemeine Lösungen multipler Testprobleme. EDV in Medizin und Biologie 13 120-128.
  • SONNEMANN, E. and FINNER, H. (1988). Vollständigkeitssätze für multiple Testprobleme. In Multiple Hy pothesenprüfung (P. Bauer et al., eds.) 121-135. Springer, Berlin.
  • STEFANSSON, G., KIM, W.-C. and HSU, J. C. (1988). On confidence sets in multiple comparisons. In Statistical Decision Theory and Related Topics IV (S. S. Gupta and J. O. Berger, eds.) 2 89-104. Academic Press, New York.
  • STREITBERG, B. and RÖHMEL, J. (1988). Diskussion: Einige strukturelle Aspekte bei multiplen Testproblemen. In Multiple Hy pothesenprüfung (P. Bauer et al., eds.) 136-143. Springer, Berlin.
  • TUKEY, J. W. (1953). The problem of multiple comparisons. Mimeographed monograph.