The Annals of Statistics

Asymptotic inference for near unit roots in spatial autoregression

L. A. Franklin, B. B. Bhattacharyya, and G. D. Richardson

Full-text: Open access

Abstract

Asymptotic inference for estimators of $(\alpha_n, \beta_n)$ in the spatial autoregressive model $Z_{ij}(n) = \alpha_n Z_{i-1, j}(n) + \beta_n Z_{i, j-1}(n) - \alpha_n \beta_n Z_{i-1, j-1}(n) + \varepsilon_{ij}$ is obtained when $\alpha_n$ and $\beta_n$ are near unit roots. When $\alpha_n$ and $\beta_n$ are reparameterized by $\alpha_n = e^{c/n}$ and $\beta_n = e^{d/n}$, it is shown that if the "one-step Gauss-Newton estimator" of $\lambda_1 \alpha_n + \lambda_2 \beta_n$ is properly normalized and embedded in the function space $D([0, 1]^2)$, the limiting distribution is a Gaussian process. The key idea in the proof relies on a maximal inequality for a two-parameter martingale which may be of independent interest. A simulation study illustrates the speed of convergence and goodness-of-fit of these estimators for various sample sizes.

Article information

Source
Ann. Statist., Volume 25, Number 4 (1997), 1709-1724.

Dates
First available in Project Euclid: 9 September 2002

Permanent link to this document
https://projecteuclid.org/euclid.aos/1031594738

Digital Object Identifier
doi:10.1214/aos/1031594738

Mathematical Reviews number (MathSciNet)
MR1463571

Zentralblatt MATH identifier
0890.62018

Subjects
Primary: 62F12: Asymptotic properties of estimators 62M30: Spatial processes
Secondary: 60F17: Functional limit theorems; invariance principles

Keywords
Spatial autoregressive process near unit roots Gauss-Newton estimation central limit theory

Citation

Bhattacharyya, B. B.; Richardson, G. D.; Franklin, L. A. Asymptotic inference for near unit roots in spatial autoregression. Ann. Statist. 25 (1997), no. 4, 1709--1724. doi:10.1214/aos/1031594738. https://projecteuclid.org/euclid.aos/1031594738


Export citation

References

  • BASU, S. 1990. Analy sis of first-order spatial bilateral ARMA models. Ph.D. dissertation, Univ. Wisconsin, Madison.Z.
  • BASU, S. and REINSEL, G. C. 1992. A note on properties of spatial Yule Walker estimators. J. Statist. Comput. Simulation 41 243 255. Z.
  • BASU, S. and REINSEL, G. C. 1993. Properties of the spatial unilateral first-order ARMA model. Adv. in Appl. Probab. 25 631 648. Z.
  • BASU, S. and REINSEL, G. C. 1994. Regression models with spatially correlated errors. J. Amer. Statist. Assoc. 89 88 99. Z.
  • BHATTACHARy YA, B. B., KHALIL, T. M. and RICHARDSON, G. D. 1996. Gauss Newton estimation of parameters for a spatial autoregression model. Statist. Probab. Lett. 28 173 179. Z.
  • BICKEL, P. J. and WICHURA, M. J. 1971. Convergence criteria for multiparameter stochastic processes and some applications. Ann. Math. Statist. 42 1656 1670. Z.
  • BILLINGSLEY, P. 1968. Convergence of Probability Measures. Wiley, New York. Z.
  • BOBKOSKI, M. J. 1983. Hy pothesis testing in nonstationary time series. Ph.D. dissertation, Univ. Wisconsin, Madison.
  • BROWN, B. M. 1971. Martingale central limit theorems. Ann. Math. Statist. 42 59 66. Z. Z.
  • CHAN, N. H. and WEI, C. Z. 1987. Asy mptotic inference for nearly nonstationary AR 1 processes. Ann. Statist. 15 1050 1063. Z.
  • COX, D. D. and LLATAS, I. 1991. Maximum likelihood ty pe estimation for nearly nonstationary autoregressive time series. Ann. Statist. 19 1109 1128. Z.
  • CULLIS, B. R. and GLEESON, A. C. 1991. Spatial analysis of field experiments an extension to two dimensions. Biometrics 47 1449 1460. Z.
  • FULLER, W. A. 1976. Introduction to Statistical Time Series. Wiley, New York. Z.
  • JAIN, A. K. 1981. Advances in mathematical models for image processing. Proc. IEEE 69 502 528. Z.
  • KHALIL, T. M. 1991. A study of the doubly geometric process, stationary cases and a nonstationary case. Ph.D. dissertation, North Carolina State Univ., Raleigh. Z.
  • MARTIN, R. J. 1979. A subclass of lattice processes applied to a problem in planar sampling. Biometrika 66 209 217. Z.
  • MARTIN, R. J. 1990. The use of time-series models and methods in the analysis of agricultural field trials. Comm. Statist. Theory Methods 19 55 81. Z.
  • MCLEISH, D. L. 1974. Dependent central limit theorems and invariance principles. Ann. Probab. 2 620 628. Z.
  • PHILLIPS, P. C. B. 1987. Towards a unified asy mptotic theory for autoregression. Biometrika 74 535 547. Z.
  • TJOSTHEIM, D. 1978. Statistical spatial series modeling. Adv. in Appl. Probab. 10 130 154. Z.
  • TJOSTHEIM, D. 1981. Autoregressive modeling and spectral analysis of array data in the plane. IEEE Trans. on Geoscience and Remote Sensing 19 15 24. Z.
  • TJOSTHEIM, D. 1983. Statistical spatial series modelling II: some further results on unilateral processes. Adv. in Appl. Probab. 15 562 584. Z.
  • WALSH, J. B. 1986. Martingales with a multidimensional parameter and stochastic integrals in the plane. Lectures in Probability and Statistics. Lecture Notes in Math. 1215 329 491. Springer, New York. Z.
  • WHITE, J. S. 1958. The limiting distribution of the serial correlation coefficient in the explosive case. Ann. Math. Statist. 29 1188 1197.
  • RALEIGH, NORTH CAROLINA 27695 ORLANDO, FLORIDA 32816 E-MAIL: gary r@pegasus.cc.ucf.edu
  • TERRE HAUTE, INDIANA 47809