The Annals of Statistics

Smoothed Cox regression

Dorota M. Dabrowska

Full-text: Open access


Nonparametric regression was shown by Beran and McKeague and Utikal to provide a flexible method for analysis of censored failure times and more general counting processes models in the presence of covariates. We discuss application of kernel smoothing towards estimation in a generalized Cox regression model with baseline intensity dependent on a covariate. Under regularity conditions we show that estimates of the regression parameters are asymptotically normal at rate root-n, and we also discuss estimation of the baseline cumulative hazard function and related parameters.

Article information

Ann. Statist., Volume 25, Number 4 (1997), 1510-1540.

First available in Project Euclid: 9 September 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62G05: Estimation 62M09: Non-Markovian processes: estimation

Kernel estimation counting processes hazard functions estimation


Dabrowska, Dorota M. Smoothed Cox regression. Ann. Statist. 25 (1997), no. 4, 1510--1540. doi:10.1214/aos/1031594730.

Export citation


  • Andersen, P. K., Borgan, O., Gill, R. D. and Keiding, N. (1993). Statistical Models Based on Counting Processes. Springer, New York.
  • Andersen, P. K. and Gill, R. D. (1982). Cox's regression model for counting processes: a large sample study. Ann. Statist. 10 1100-1120.
  • Beran, R. (1981). Nonparametric regression with randomly censored survival data. Technical report, Univ. California, Berkeley.
  • Bickel, P. J. and Wichura, M. J. (1971). Convergence criteria for multiparameter stochastic processes with applications. Ann. Math. Statist. 42 1656-1670.
  • Borgan, Ø. (1984). Maximum likelihood estimation in parametric counting process models, with applications to censored failure time data. Scand. J. Statist. 11 1-16.
  • Dabrowska, D. M. (1989). Uniform consistency of the kernel conditional Kaplan-Meier estimate. Ann. Statist. 17 1157-1167.
  • Dellacherie, C. and Meyer, P. A. (1978). Probabilities and Potential. North-Holland, Amsterdam.
  • Fix, E. and Ney man, J. (1951). A simple stochastic model for recovery, relapse, death and loss of patients. Human Biology 23 205-241.
  • Gill, R. D. (1989). Nonand semiparametric maximum likelihood estimators and the van Mises method, I. Scand. J. Statist. 16 97-128.
  • Gill, R. D. and Johansen, S. (1990). A survey of product integration with a view towards application in survival analysis. Ann. Statist. 18 1501-1555.
  • Gill, R. D., van der Laan, M. and Wellner, J. A. (1995). Inefficient estimators of the bivariate survival function in three models. Ann. Inst. H. Poincar´e 31 545-597.
  • Hildebrandt, T. H. (1963). Introduction to the Theory of Integration. Academic Press, New York.
  • Jacod, J. (1975). Multivariate point processes: predictable projection, Radon-Nikody m derivatives, representation of martingales. Z. Wahrsch. Verw. Gebiete 31 235-254.
  • Keiding, N. (1990). Statistical inference in the Lexis diagram. Philos. Trans. Roy. Soc. London Ser. A 332 487-509.
  • McKeague, I. W., Nikabadze, A. M. and Sun, Y. (1995). An omnibus test for independence of a survival time from a covariate. Ann. Statist. 23 450-475. McKeague, I. W. and Utikal, K. J. (1990a). Inference for a nonlinear counting process regression model. Ann. Statist. 18 1172-1187. McKeague, I. W. and Utikal, K. J. (1990b). Identifying nonlinear covariate effects in semimartingale regression models. Probab. Theory Related Fields 87 1-25.
  • McKeague, I. W. and Utikal, K. J. (1991). Goodness-of-fit tests for additive hazards and proportional hazards models. Scand. J. Statist. 18 177-195.
  • Nielsen, J. P. and Linton, O. B. (1995). Kernel estimation in a nonparametric marker dependent hazard model. Ann. Statist. 23 1735-1749.
  • O'Sullivan, F. (1993). Nonparametric estimation in the Cox model. Ann. Statist. 21 124-145.
  • Ramlau-Hansen, H. (1983). Smoothing counting process intensities by means of kernel functions. Ann. Statist. 11 453-466.
  • Sasieni, P. (1992). Information bounds for the conditional hazard ratio in a nested family of regression models. J. Roy. Statist. Soc. Ser. B 54 617-635.
  • Stein, E. M. (1970). Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press.
  • Therneau, T. M., Grambsch, P. M. and Fleming, T. R. (1990). Martingale-based residuals for survival models. Biometrika 77 147-160.
  • Thomas, D. C. (1983). Nonparametric estimation and tests for fit for dose response relations. Biometrics 39 263-268.
  • Young, W. H. (1917). On multiple integration by parts and the second theorem of the mean. Proc. London Math. Soc. 2 16 273-293.