Annals of Statistics

The existence and asymptotic properties of a backfitting projection algorithm under weak conditions

E. Mammen, O. Linton, and J. Nielsen

Full-text: Open access

Abstract

We derive the asymptotic distribution of a new backfitting procedure for estimating the closest additive approximation to a nonparametric regression function. The procedure employs a recent projection interpretation of popular kernel estimators provided by Mammen, Marron, Turlach and Wand and the asymptotic theory of our estimators is derived using the theory of additive projections reviewed in Bickel, Klaassen, Ritov and Wellner. Our procedure achieves the same bias and variance as the oracle estimator based on knowing the other components, and in this sense improves on the method analyzed in Opsomer and Ruppert. We provide ‘‘high level’’ conditions independent of the sampling scheme. We then verify that these conditions are satisfied in a regression and a time series autoregression under weak conditions.

Article information

Source
Ann. Statist., Volume 27, Number 5 (1999), 1443-1490.

Dates
First available in Project Euclid: 23 September 2004

Permanent link to this document
https://projecteuclid.org/euclid.aos/1017939138

Digital Object Identifier
doi:10.1214/aos/1017939138

Mathematical Reviews number (MathSciNet)
MR2001d:62040

Zentralblatt MATH identifier
0986.62028

Subjects
Primary: 62G07: Density estimation
Secondary: 62G20: Asymptotic properties

Keywords
Additive models alternating projections backfitting kernel smoothing local polynomials nonparametric regression

Citation

Mammen, E.; Linton, O.; Nielsen, J. The existence and asymptotic properties of a backfitting projection algorithm under weak conditions. Ann. Statist. 27 (1999), no. 5, 1443--1490. doi:10.1214/aos/1017939138. https://projecteuclid.org/euclid.aos/1017939138


Export citation

References

  • AUESTAD, B. and TJØSTHEIM, D. 1991. Functional identification in nonlinear time series. In Z. Nonparametric Functional Estimation and Related Topics G. Roussas, ed. 493 507. Kluwer, Amsterdam. Z.
  • BALAKRISHNAN, A. V. 1981. Applied Functional Analysis. Springer, New York. Z.
  • BICKEL, P. J., KLAASSEN, C. A. J., RITOV, Y. and WELLNER, J. A. 1993. Efficient and Adaptive Estimation for Semiparametric Models. John Hopkins Univ. Press. Z.
  • DEUTSCH, F. 1985. Rate of convergence of the method of alternating projections. In Parametric Z. Optimization and Approximation B. Brosowski and F. Deutsch, ed. 96 107. Birkhauser, Basel. ¨ Z.
  • FAN, J., MAMMEN, E. and HARDLE, W. 1998. Direct estimation of low-dimensional components ¨ in additive models. Ann. Statist. 26 943 971. Z.
  • HARDLE, W. 1991. Applied Nonparametric Regression. Cambridge Univ. Press. ¨ Z.
  • HASTIE, T. and TIBSHIRANI, R. 1991. Generalized Additive Models. Chapman and Hall, London. Z.
  • LINTON, O. B. 1997. Efficient estimation of additive nonparametric regression models. Biometrika 84 469 474. Z.
  • LINTON, O. B. and NIELSEN, J. P. 1995. Estimating structured nonparametric regression by the kernel method. Biometrika 82 93 101. Z.
  • MAMMEN, E., MARRON, J. S., TURLACH, B. and WAND, M. P. 1997. A general framework for smoothing. Preprint. Z.
  • MASRY, E. 1996a. Multivariate regression estimation: local polynomial fitting for time series. Stochastic Processes Appl. 65 81 101. Z.
  • MASRY, E. 1996b. Multivariate local polynomial regression for time series: uniform strong consistency and rates. J. Time Ser. Anal. 17 571 599. Z.
  • NEWEY, W. K. 1994. Kernel estimation of partial means. Econom. Theory 10 233 253. Z.
  • OPSOMER, J. D. 1998. On the existence and asymptotic properties of backfitting estimators. Ann. Statist. To appear.Z.
  • OPSOMER, J. D. and RUPPERT, D. 1997. Fitting a bivariate additive model by local polynomial regression. Ann. Statist. 25 186 211. Z.
  • ROSENBLATT, M. 1956. A central limit theorem and strong mixing conditions. Proc. Nat. Acad. Sci. U.S. A. 4 43 47. Z.
  • RUPPERT, D. and WAND, M. 1994. Multivariate locally weighted least squares regression. Ann. Statist. 22 1346 1370.
  • SMITH, K. T., SOLOMON, D. C. and WAGNER, S. L. 1977. Practical and mathematical aspects of the problem of reconstructing objects from radiographs. Bull. Amer. Math. Soc. 83 1227 1270. Z. TJØSTHEIM, D. and AUESTAD, B. 1994. Nonparametric identification of nonlinear time series: projections. J. Amer. Statist. Assoc. 89 1398 1409.
  • GERMANY NEW HAVEN, CONNECTICUT 06520-8281 E-MAIL: mammen@statlab.uni-heidelberg.de E-MAIL: linton@econ.yale.edu