Annals of Statistics

Local polynomial regresssion estimators in survey sampling

F. Jay Breidt and Jean D. Opsomer

Full-text: Open access


Estimation of finite population totals in the presence of auxiliary information is considered. A class of estimators based on local polynomial regression is proposed. Like generalized regression estimators, these estimators are weighted linear combinations of study variables, in which the weights are calibrated to known control totals, but the assumptions on the superpopulation model are considerably weaker. The estimators are shown to be asymptotically design-unbiased and consistent under mild assumptions. A variance approximation based on Taylor linearization is suggested and shown to be consistent for the design mean squared error of the estimators. The estimators are robust in the sense of asymptotically attaining the Godambe–Joshi lower bound to the anticipated variance. Simulation experiments indicate that the estimators are more efficient than regression estimators when the model regression function is incorrectly specified, while being approximately as efficient when the parametric specification is correct.

Article information

Ann. Statist., Volume 28, Number 4 (2000), 1026-1053.

First available in Project Euclid: 12 March 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62D05: Sampling theory, sample surveys
Secondary: 62G08: Nonparametric regression

Calibration generalized regression estimation Godambe-Joshi lower bound model-assisted estimation nonparametric regression


Breidt, F. Jay; Opsomer, Jean D. Local polynomial regresssion estimators in survey sampling. Ann. Statist. 28 (2000), no. 4, 1026--1053. doi:10.1214/aos/1015956706.

Export citation


  • Brewer, K. R. W. (1963). Ratio estimation in finite populations: some results deductible from the assumption of an underlying stochastic process. Austral. J. Statist. 5 93-105.
  • Cassel, C.-M., S¨arndal, C.-E. and Wretman, J. H. (1977). Foundations of Inference in Survey Sampling. Wiley, New York.
  • Chambers, R. L. (1996). Robust case-weighting for multipurpose establishment surveys. J. Official Statist. 12 3-32.
  • Chambers, R. L., Dorfman, A. H. and Wehrly, T. E. (1993). Bias robust estimation in finite populations using nonparametric calibration. J. Amer. Statist. Assoc. 88 268-277.
  • Chen, J. and Qin, J. (1993). Empirical likelihood estimation for finite populations and the effective usage of auxiliaryinformation. Biometrika 80 107-116.
  • Cleveland, W. S. (1979). Robust locallyweighted regression and smoothing scatterplots. J. Amer. Statist. Assoc. 74 829-836.
  • Cleveland, W. S. and Devlin, S. (1988). Locallyweighted regression: an approach to regression analysis by local fitting. J. Amer. Statist. Assoc. 83 596-610.
  • Cochran, W. G. (1977). Sampling Techniques, 3rd ed. Wiley, New York.
  • Deville, J.-C. and S¨arndal, C.-E. (1992). Calibration estimators in surveysampling. J. Amer. Statist. Assoc. 87 376-382.
  • Dorfman, A. H. (1992). Nonparametric regression for estimating totals in finite populations. Proceedings of the Section on Survey Research Methods 622-625. Amer. Statist. Assoc., Alexandria, VA.
  • Dorfman, A. H. and Hall, P. (1993). Estimators of the finite population distribution function using nonparametric regression. Ann. Statist. 21 1452-1475.
  • Fan, J. (1992). Design-adaptive nonparametric regression. J. Amer. Statist. Assoc. 87 998-1004.
  • Fan, J. (1993). Local linear regression smoothers and their minimax efficiencies. Ann. Statist. 21 196-216.
  • Fan, J. and Gijbels, I. (1996). Local Polynomial Modeling and Its Applications. Chapman and Hall, London.
  • Fuller, W. A. (1996). Introduction to Statistical Time Series, 2nd ed. Wiley, New York.
  • Godambe, V. P. and Joshi, V. M. (1965). Admissibilityand Bayes estimation in sampling finite populations I. Ann. Math. Statist. 36 1707-1722.
  • Hall, P. and Turlach, B. A. (1997). Interpolation methods for adapting to sparse design in nonparametric regression. J. Amer. Statist. Assoc. 92 466-472.
  • Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models. Chapman and Hall, London.
  • Horvitz, D. G. and Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe. J. Amer. Statist. Assoc. 47 663-685.
  • Isaki, C. T. and Fuller, W. A. (1982). Surveydesign under the regression superpopulation model. J. Amer. Statist. Assoc. 77 89-96.
  • Kuo, L. (1998). Classical and prediction approaches to estimating distribution functions from surveydata. Proceedings of the Section on Survey Research Methods 280-285. Amer. Statist. Assoc., Alexandria, VA.
  • Opsomer, J.-D. and Ruppert, D. (1997). Fitting a bivariate additive model bylocal polynomial regression. Ann. Statist. 25 186-211.
  • Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.
  • Robinson, P. M. and S¨arndal, C.-E. (1983). Asymptotic properties of the generalized regression estimation in probabilitysampling. Sankhy¯a. Ser. B 45 240-248.
  • Royall, R. M. (1970). On finite population sampling under certain linear regression models. Biometrika 57 377-387.
  • Ruppert, D. and Wand, M. P. (1994). Multivariate locallyweighted least squares regression. Ann. Statist. 22 1346-1370.
  • S¨arndal, C.-E. (1980). On -inverse weighting versus best linear unbiased weighting in probabilitysampling. Biometrika 67 639-650.
  • S¨arndal, C.-E., Swensson, B. and Wretman, J. (1989). The weighted residual technique for estimating the variance of the general regression estimator of the finite population total. Biometrika 76 527-537.
  • S¨arndal, C.-E., Swensson, B. and Wretman, J. (1992). Model Assisted Survey Sampling. Springer, New York.
  • Sen, P. K. (1988). Asymptotics in finite population sampling. In Handbook of Statistics (P. R. Krishnaiah and C. R. Rao, eds.) 6 291-331. North-Holland, Amsterdam.
  • Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York.
  • Tam, S. M. (1988). Some results on robust estimation in finite population sampling. J. Amer. Statist. Assoc. 83 242-248.
  • Thompson, M. E. (1997). Theory of Sample Surveys. Chapman and Hall, London.
  • Wand, M. P. and Jones, M. C. (1995). Kernel Smoothing. Chapman and Hall, London.
  • Wright, R. L. (1983). Finite population sampling with multivariate auxiliaryinformation. J. Amer. Statist. Assoc. 78 879-884.