The Annals of Statistics

On posterior consistency of survival models

Yongdai Kim and Jaeyong Lee

Full-text: Open access

Abstract

Ghosh and Ramamoorthi studied posterior consistency for survival models and showed that the posterior was consistent when the prior on the distribution of survival times was the Dirichlet process prior. In this paper,we study posterior consistency of survival models with neutral to the right process priors which include Dirichlet process priors. A set of sufficient conditions for posterior consistency with neutral to the right process priors are given. Interestingly, not all the neutral to the right process priors have consistent posteriors, but most of the popular priors such as Dirichlet processes, beta processes and gamma processes have consistent posteriors. With a class of priors which includes beta processes, a necessary and sufficient condition for the consistency is also established. An interesting counter-intuitive phenomenon is found. Suppose there are two priors centered at the true parameter value with finite variances. Surprisingly, the posterior with smaller prior variance can be inconsistent, while that with larger prior variance is consistent.

Article information

Source
Ann. Statist., Volume 29, Issue 3 (2001), 666-686.

Dates
First available in Project Euclid: 24 December 2001

Permanent link to this document
https://projecteuclid.org/euclid.aos/1009210685

Digital Object Identifier
doi:10.1214/aos/1009210685

Mathematical Reviews number (MathSciNet)
MR1865336

Zentralblatt MATH identifier
1012.62105

Subjects
Primary: 62G20: Asymptotic properties
Secondary: 62M05: Markov processes: estimation

Keywords
Survival model,,,. posterior consistency Levy process neutral to the right process

Citation

Kim, Yongdai; Lee, Jaeyong. On posterior consistency of survival models. Ann. Statist. 29 (2001), no. 3, 666--686. doi:10.1214/aos/1009210685. https://projecteuclid.org/euclid.aos/1009210685


Export citation

References

  • Barron, A. R. (1988). The exponential convergence of posterior probabilities with implications for Bayes estimators of density functions. Technical report, Univ. Illinois.
  • Barron, A. R. (1989). Uniformly powerful goodness of fit tests. Ann. Statist. 17 107-124.
  • Barron, A., Schervish, M. J. and Wasserman, L. (1999). The consistency of posterior distributions in nonparametric problems. Ann. Statist. 27 536-561.
  • Breiman, L. (1968). Probability. Addison-Wesley, Reading, MA.
  • Daley, D. J. and Vere-Jones, D. (1988). An Introduction to the Theory of Point Processes. Springer, New York.
  • Damien, P., Laud, P. W. and Smith, A. F. M. (1996). Implementation of Bayesian nonparametric inference based on beta processes. Scand. J. Statist. 23 27-36.
  • Doksum, K. A. (1974). Tailfree and neutral random probabilities and their posterior distributions. Ann. Probab. 2 183-201.
  • Doss, H. (1994). Bayesian nonparametric estimation for incomplete data via successive substitution sampling. Ann. Statist. 22 1763-1786.
  • Dykstra, R. L. and Laud, P. (1981). A Bayesian nonparametric approach to reliability. Ann. Statist. 9 356-367.
  • Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209-230.
  • Ferguson, T. S. and Phadia, E. G. (1979). Bayesian nonparametric estimation based on censored data. Ann. Statist. 7 163-186.
  • Fristedt, B. and Gray, L. (1997). A Modern Approach to Probability Theory. Birkh¨auser, Boston. Ghosal, S., Ghosh, J. K. and Ramamoorthi, R. V. (1999a). Posterior consistency of Dirichlet mixtures in density estimation. Ann. Statist. 27 143-158. Ghosal, S., Ghosh, J. K. and Ramamoorthi, R. V. (1999b). Consistency issues in Bayesian nonparametrics. In Asymptotic Nonparametrics and Time Series: A Tribute to Madan Lal Puri (S. Ghosh, ed.) 639-667. Dekker, New York.
  • Ghosal, S., Ghosh, J. K. and van der Vaart (2000). Convergence rates of posterior distributions. Ann. Statist. 28 500-531.
  • Ghosh, J. K. and Ramamoorthi R. V. (1995). Consistency of Bayesian inference for survival analysis with or without censoring. In Analysis of Censored Data (H.L. Koul and J. V. Deshpande, eds.) 27 95-103. IMS, Hayward, CA.
  • Gikhman, I. I. and Skorokhod, A. V. (1975). Theory of Stochastic Processes II. Springer, Berlin.
  • Gill, R. D. and Johansen, S. (1990). A survey of product integration with a view toward application in survival analysis. Ann. Statist. 18 1501-1555.
  • Hjort, N. L. (1990). Nonparametric Bayes estimators based on beta processes in models for life history data. Ann. Statist. 18 1259-1294.
  • Jacod, J. (1979). Calcul stochastique et probl´emes de martingales. Lecture Notes in Math. 714. Springer, Berlin.
  • Jacod, J. and Shiryaev, A. N. (1987). Limit Theorems for Stochastic Processes. Springer, New York.
  • Kalbfleisch, J. D. (1978). Nonparametric Bayesian analysis of survival time data. J. Roy. Statist. Soc. Ser. B 40 214-221.
  • Kim, Y. (1999). Nonparametric Bayesian estimators for counting processes. Ann. Statist. 27 562-588.
  • Lo, A. Y. (1982). Bayesian nonparametric statistical inference for Poisson point processes. Z. Wahrsch. Verw. Gebiete 59 55-66.
  • Schwartz, L. (1965). On Bayes procedures. Z. Wahrsch. Verw. Gebiete 4 10-26.
  • Shen, X. and Wasserman, L. (1998). Rates of convergence of posterior distributions. Technical report, Carnegie Mellon Univ.
  • Susarla, V. and Van Ryzin, J. (1976). Nonparametric Bayesian estimation of survival curves from incomplete observations. J. Amer. Statist. Assoc. 71 897-902.
  • Tsiatis, A. A. (1981). A large sample study of Cox's regression model. Ann. Statist. 9 93-108.
  • Walker, S. and Muliere, P. (1997). Beta-Stacy processes and a generalization of the P´olya-urn scheme. Ann. Statist. 25 1762-1780.
  • Wolpert, R. L. and Ickstadt K. (1998). Simulation of L´evy random fields. Practical Nonparametric and Semiparametric Bayesian Statistics. Lecture Notes in Statist. 133 227-242. Springer, New York.