Open Access
May 2020 Exchangeable interval hypergraphs and limits of ordered discrete structures
Julian Gerstenberg
Ann. Probab. 48(3): 1128-1167 (May 2020). DOI: 10.1214/19-AOP1384
Abstract

A hypergraph $(V,E)$ is called an interval hypergraph if there exists a linear order $l$ on $V$ such that every edge $e\in E$ is an interval w.r.t. $l$; we also assume that $\{j\}\in E$ for every $j\in V$. Our main result is a de Finetti-type representation of random exchangeable interval hypergraphs on $\mathbb{N}$ (EIHs): the law of every EIH can be obtained by sampling from some random compact subset $K$ of the triangle $\{(x,y):0\leq x\leq y\leq1\}$ at i.i.d. uniform positions $U_{1},U_{2},\dots$, in the sense that, restricted to the node set $[n]:=\{1,\dots,n\}$ every nonsingleton edge is of the form $e=\{i\in[n]:x<U_{i}<y\}$ for some $(x,y)\in K$. We obtain this result via the study of a related class of stochastic objects: erased-interval processes (EIPs). These are certain transient Markov chains $(I_{n},\eta_{n})_{n\in\mathbb{N}}$ such that $I_{n}$ is an interval hypergraph on $V=[n]$ w.r.t. the usual linear order (called interval system). We present an almost sure representation result for EIPs. Attached to each transient Markov chain is the notion of Martin boundary. The points in the boundary of EIPs can be seen as limits of growing interval systems. We obtain a one-to-one correspondence between these limits and compact subsets $K$ of the triangle with $(x,x)\in K$ for all $x\in[0,1]$.

Interval hypergraphs are a generalizations of hierarchies and as a consequence we obtain a representation result for exchangeable hierarchies, which is close to a result of Forman, Haulk and Pitman in (Probab. Theory Related Fields 172 (2018) 1–29). Several ordered discrete structures can be seen as interval systems with additional properties, that is, Schröder trees (rooted, ordered, no node has outdegree one) or even more special: binary trees. We describe limits of Schröder trees as certain tree-like compact sets. These can be seen as an ordered counterpart to real trees, which are widely used to describe limits of discrete unordered trees. Considering binary trees, we thus obtain a homeomorphic description of the Martin boundary of Rémy’s tree growth chain, which has been analyzed by Evans, Grübel and Wakolbinger in (Ann. Probab. 45 (2017) 225–277).

References

1.

[1] Alonso, L., Rémy, J. L. and Schott, R. (1997). Uniform generation of a Schröder tree. Inform. Process. Lett. 64 305–308.[1] Alonso, L., Rémy, J. L. and Schott, R. (1997). Uniform generation of a Schröder tree. Inform. Process. Lett. 64 305–308.

2.

[2] Austin, T. (2008). On exchangeable random variables and the statistics of large graphs and hypergraphs. Probab. Surv. 5 80–145. MR2426176 1189.60020 10.1214/08-PS124[2] Austin, T. (2008). On exchangeable random variables and the statistics of large graphs and hypergraphs. Probab. Surv. 5 80–145. MR2426176 1189.60020 10.1214/08-PS124

3.

[3] Burago, D., Burago, Y. and Ivanov, S. (2001). A Course in Metric Geometry. Graduate Studies in Mathematics 33. Amer. Math. Soc., Providence, RI. 0981.51016[3] Burago, D., Burago, Y. and Ivanov, S. (2001). A Course in Metric Geometry. Graduate Studies in Mathematics 33. Amer. Math. Soc., Providence, RI. 0981.51016

4.

[4] Choi, H. S. and Evans, S. N. (2017). Doob–Martin compactification of a Markov chain for growing random words sequentially. Stochastic Process. Appl. 127 2428–2445. 1366.60094 10.1016/j.spa.2016.11.006[4] Choi, H. S. and Evans, S. N. (2017). Doob–Martin compactification of a Markov chain for growing random words sequentially. Stochastic Process. Appl. 127 2428–2445. 1366.60094 10.1016/j.spa.2016.11.006

5.

[5] Diaconis, P., Holmes, S. and Janson, S. (2013). Interval graph limits. Ann. Comb. 17 27–52. 1274.60028 10.1007/s00026-012-0175-0[5] Diaconis, P., Holmes, S. and Janson, S. (2013). Interval graph limits. Ann. Comb. 17 27–52. 1274.60028 10.1007/s00026-012-0175-0

6.

[6] Diaconis, P. and Janson, S. (2008). Graph limits and exchangeable random graphs. Rend. Mat. Appl. (7) 28 33–61. 1162.60009[6] Diaconis, P. and Janson, S. (2008). Graph limits and exchangeable random graphs. Rend. Mat. Appl. (7) 28 33–61. 1162.60009

7.

[7] Evans, S. N., Grübel, R. and Wakolbinger, A. (2017). Doob–Martin boundary of Rémy’s tree growth chain. Ann. Probab. 45 225–277. 1387.60119 10.1214/16-AOP1112 euclid.aop/1485421333[7] Evans, S. N., Grübel, R. and Wakolbinger, A. (2017). Doob–Martin boundary of Rémy’s tree growth chain. Ann. Probab. 45 225–277. 1387.60119 10.1214/16-AOP1112 euclid.aop/1485421333

8.

[8] Evans, S. N. and Wakolbinger, A. (2017). Radix sort trees in the large. Electron. Commun. Probab. 22 68. 1386.60267 10.1214/17-ECP77[8] Evans, S. N. and Wakolbinger, A. (2017). Radix sort trees in the large. Electron. Commun. Probab. 22 68. 1386.60267 10.1214/17-ECP77

9.

[9] Forman, N. (2018). Mass structure of weighted real trees. ArXiv preprint. Available at  arXiv:1801.02700v11801.02700v1[9] Forman, N. (2018). Mass structure of weighted real trees. ArXiv preprint. Available at  arXiv:1801.02700v11801.02700v1

10.

[10] Forman, N., Haulk, C. and Pitman, J. (2018). A representation of exchangeable hierarchies by sampling from random real trees. Probab. Theory Related Fields 172 1–29. 1428.60052 10.1007/s00440-017-0799-4[10] Forman, N., Haulk, C. and Pitman, J. (2018). A representation of exchangeable hierarchies by sampling from random real trees. Probab. Theory Related Fields 172 1–29. 1428.60052 10.1007/s00440-017-0799-4

11.

[11] Gerstenberg, J. (2017). General Erased-Word Processes: Product-Type Filtrations, Ergodic Laws and Martin Boundaries. ArXiv preprint. Available at  arXiv:1712.003841712.00384 07194634 10.1016/j.spa.2019.10.003[11] Gerstenberg, J. (2017). General Erased-Word Processes: Product-Type Filtrations, Ergodic Laws and Martin Boundaries. ArXiv preprint. Available at  arXiv:1712.003841712.00384 07194634 10.1016/j.spa.2019.10.003

12.

[12] Gerstenberg, J. (2018). Austauschbarkeit in Diskreten Strukturen: Simplizes und Filtrationen. Ph.D. thesis, Leibniz Univsersität Hannover, Germany.[12] Gerstenberg, J. (2018). Austauschbarkeit in Diskreten Strukturen: Simplizes und Filtrationen. Ph.D. thesis, Leibniz Univsersität Hannover, Germany.

13.

[13] Gerstenberg, J., Grübel, R. and Hagemann, K. (2016). A boundary theory approach to de Finetti’s theorem. ArXiv preprint. Available at  arXiv:1610.025611610.02561[13] Gerstenberg, J., Grübel, R. and Hagemann, K. (2016). A boundary theory approach to de Finetti’s theorem. ArXiv preprint. Available at  arXiv:1610.025611610.02561

14.

[14] Glasner, E. (2003). Ergodic Theory via Joinings. Mathematical Surveys and Monographs 101. Amer. Math. Soc., Providence, RI.[14] Glasner, E. (2003). Ergodic Theory via Joinings. Mathematical Surveys and Monographs 101. Amer. Math. Soc., Providence, RI.

15.

[15] Gnedin, A. V. (1997). The representation of composition structures. Ann. Probab. 25 1437–1450. MR1457625 0895.60037 10.1214/aop/1024404519 euclid.aop/1024404519[15] Gnedin, A. V. (1997). The representation of composition structures. Ann. Probab. 25 1437–1450. MR1457625 0895.60037 10.1214/aop/1024404519 euclid.aop/1024404519

16.

[16] Grübel, R. (2015). Persisting randomness in randomly growing discrete structures: Graphs and search trees. Discrete Math. Theor. Comput. Sci. 18 1.[16] Grübel, R. (2015). Persisting randomness in randomly growing discrete structures: Graphs and search trees. Discrete Math. Theor. Comput. Sci. 18 1.

17.

[17] Hoffman, C., Rizzolo, D. and Slivken, E. (2017). Pattern-avoiding permutations and Brownian excursion Part I: Shapes and fluctuations. Random Structures Algorithms 50 394–419. 1364.05003 10.1002/rsa.20677[17] Hoffman, C., Rizzolo, D. and Slivken, E. (2017). Pattern-avoiding permutations and Brownian excursion Part I: Shapes and fluctuations. Random Structures Algorithms 50 394–419. 1364.05003 10.1002/rsa.20677

18.

[18] Hoppen, C., Kohayakawa, Y., Moreira, C. G., Ráth, B. and Menezes Sampaio, R. (2013). Limits of permutation sequences. J. Combin. Theory Ser. B 103 93–113. 1255.05174 10.1016/j.jctb.2012.09.003[18] Hoppen, C., Kohayakawa, Y., Moreira, C. G., Ráth, B. and Menezes Sampaio, R. (2013). Limits of permutation sequences. J. Combin. Theory Ser. B 103 93–113. 1255.05174 10.1016/j.jctb.2012.09.003

19.

[19] Kallenberg, O. (2005). Probabilistic Symmetries and Invariance Principles. Probability and Its Applications (New York). Springer, New York. 1084.60003[19] Kallenberg, O. (2005). Probabilistic Symmetries and Invariance Principles. Probability and Its Applications (New York). Springer, New York. 1084.60003

20.

[20] Kingman, J. F. C. (1978). The representation of partition structures. J. Lond. Math. Soc. (2) 18 374–380. 0415.92009 10.1112/jlms/s2-18.2.374[20] Kingman, J. F. C. (1978). The representation of partition structures. J. Lond. Math. Soc. (2) 18 374–380. 0415.92009 10.1112/jlms/s2-18.2.374

21.

[21] Laurent, S. (2016). Filtrations of the erased-word processes. In Séminaire de Probabilités XLVIII. Lecture Notes in Math. 2168 445–458. Springer, Cham.[21] Laurent, S. (2016). Filtrations of the erased-word processes. In Séminaire de Probabilités XLVIII. Lecture Notes in Math. 2168 445–458. Springer, Cham.

22.

[22] Le Gall, J.-F. (1999). Spatial Branching Processes, Random Snakes and Partial Differential Equations. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel. 0938.60003[22] Le Gall, J.-F. (1999). Spatial Branching Processes, Random Snakes and Partial Differential Equations. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel. 0938.60003

23.

[23] Leuridan, C. (2017). Poly-adic filtrations, standardness, complementability and maximality. Ann. Probab. 45 1218–1246. 1418.60105 10.1214/15-AOP1085 euclid.aop/1490947318[23] Leuridan, C. (2017). Poly-adic filtrations, standardness, complementability and maximality. Ann. Probab. 45 1218–1246. 1418.60105 10.1214/15-AOP1085 euclid.aop/1490947318

24.

[24] Lovász, L. (2012). Large Networks and Graph Limits. American Mathematical Society Colloquium Publications 60. Amer. Math. Soc., Providence, RI.[24] Lovász, L. (2012). Large Networks and Graph Limits. American Mathematical Society Colloquium Publications 60. Amer. Math. Soc., Providence, RI.

25.

[25] Marchal, P. (2003). Constructing a sequence of random walks strongly converging to Brownian motion. In Discrete Random Walks (Paris, 2003). Discrete Math. Theor. Comput. Sci. Proc., AC 181–190. Assoc. Discrete Math. Theor. Comput. Sci., Nancy. 1034.60049[25] Marchal, P. (2003). Constructing a sequence of random walks strongly converging to Brownian motion. In Discrete Random Walks (Paris, 2003). Discrete Math. Theor. Comput. Sci. Proc., AC 181–190. Assoc. Discrete Math. Theor. Comput. Sci., Nancy. 1034.60049

26.

[26] Marckert, J.-F. and Mokkadem, A. (2003). The depth first processes of Galton–Watson trees converge to the same Brownian excursion. Ann. Probab. 31 1655–1678. 1049.05026 10.1214/aop/1055425793 euclid.aop/1055425793[26] Marckert, J.-F. and Mokkadem, A. (2003). The depth first processes of Galton–Watson trees converge to the same Brownian excursion. Ann. Probab. 31 1655–1678. 1049.05026 10.1214/aop/1055425793 euclid.aop/1055425793

27.

[27] Moore, J. I. Jr. (1977). Interval hypergraphs and $D$-interval hypergraphs. Discrete Math. 17 173–179.[27] Moore, J. I. Jr. (1977). Interval hypergraphs and $D$-interval hypergraphs. Discrete Math. 17 173–179.

28.

[28] Phelps, R. R. (2001). Lectures on Choquet’s Theorem, 2nd ed. Lecture Notes in Math. 1757. Springer, Berlin. 0997.46005[28] Phelps, R. R. (2001). Lectures on Choquet’s Theorem, 2nd ed. Lecture Notes in Math. 1757. Springer, Berlin. 0997.46005

29.

[29] Vershik, A. M. (2015). Equipped graded graphs, projective limits of simplices, and their boundaries. J. Math. Sci. (N. Y.) 209 860–873. 1323.05127 10.1007/s10958-015-2533-z[29] Vershik, A. M. (2015). Equipped graded graphs, projective limits of simplices, and their boundaries. J. Math. Sci. (N. Y.) 209 860–873. 1323.05127 10.1007/s10958-015-2533-z

30.

[30] von Weizsäcker, H. (1983). Exchanging the order of taking suprema and countable intersections of $\sigma$-algebras. Ann. Inst. Henri Poincaré B, Calc. Probab. Stat. 19 91–100.[30] von Weizsäcker, H. (1983). Exchanging the order of taking suprema and countable intersections of $\sigma$-algebras. Ann. Inst. Henri Poincaré B, Calc. Probab. Stat. 19 91–100.
Copyright © 2020 Institute of Mathematical Statistics
Julian Gerstenberg "Exchangeable interval hypergraphs and limits of ordered discrete structures," The Annals of Probability 48(3), 1128-1167, (May 2020). https://doi.org/10.1214/19-AOP1384
Received: 1 March 2018; Published: May 2020
Vol.48 • No. 3 • May 2020
Back to Top