Annals of Probability

Quenched invariance principles for the maximal particle in branching random walk in random environment and the parabolic Anderson model

Jiří Černý and Alexander Drewitz

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We consider branching random walk in spatial random branching environment (BRWRE) in dimension one, as well as related differential equations: the Fisher–KPP equation with random branching and its linearized version, the parabolic Anderson model (PAM). When the random environment is bounded, we show that after recentering and scaling, the position of the maximal particle of the BRWRE, the front of the solution of the PAM, as well as the front of the solution of the randomized Fisher–KPP equation fulfill quenched invariance principles. In addition, we prove that at time $t$ the distance between the median of the maximal particle of the BRWRE and the front of the solution of the PAM is in $O(\ln t)$. This partially transfers classical results of Bramson (Comm. Pure Appl. Math. 31 (1978) 531–581) to the setting of BRWRE.

Article information

Source
Ann. Probab., Volume 48, Number 1 (2020), 94-146.

Dates
Received: January 2018
Revised: January 2019
First available in Project Euclid: 25 March 2020

Permanent link to this document
https://projecteuclid.org/euclid.aop/1585123324

Digital Object Identifier
doi:10.1214/19-AOP1347

Mathematical Reviews number (MathSciNet)
MR4079432

Zentralblatt MATH identifier
07206754

Subjects
Primary: 60J80: Branching processes (Galton-Watson, birth-and-death, etc.) 60G70: Extreme value theory; extremal processes 82B44: Disordered systems (random Ising models, random Schrödinger operators, etc.)

Keywords
Branching random walk random environment parabolic Anderson model invariance principles

Citation

Černý, Jiří; Drewitz, Alexander. Quenched invariance principles for the maximal particle in branching random walk in random environment and the parabolic Anderson model. Ann. Probab. 48 (2020), no. 1, 94--146. doi:10.1214/19-AOP1347. https://projecteuclid.org/euclid.aop/1585123324


Export citation

References

  • [1] Addario-Berry, L. and Reed, B. (2009). Minima in branching random walks. Ann. Probab. 37 1044–1079.
  • [2] Aïdékon, E. (2013). Convergence in law of the minimum of a branching random walk. Ann. Probab. 41 1362–1426.
  • [3] Athreya, S., Drewitz, A. and Sun, R. (2017). Subdiffusivity of a random walk among a Poisson system of moving traps on $\mathbb{Z}$. Math. Phys. Anal. Geom. 20 Art. 1, 22.
  • [4] Bachmann, M. (2000). Limit theorems for the minimal position in a branching random walk with independent logconcave displacements. Adv. in Appl. Probab. 32 159–176.
  • [5] Berestycki, J., Brunet, É., Harris, J. W., Harris, S. C. and Roberts, M. I. (2015). Growth rates of the population in a branching Brownian motion with an inhomogeneous breeding potential. Stochastic Process. Appl. 125 2096–2145.
  • [6] Bhattacharya, R. N. and Ranga Rao, R. (1976). Normal Approximation and Asymptotic Expansions. Wiley Series in Probability and Mathematical Statistics. Wiley, New York.
  • [7] Biggins, J. D. (1976). The first- and last-birth problems for a multitype age-dependent branching process. Adv. in Appl. Probab. 8 446–459.
  • [8] Bovier, A. (2017). Gaussian Processes on Trees: From Spin Glasses to Branching Brownian Motion. Cambridge Studies in Advanced Mathematics 163. Cambridge Univ. Press, Cambridge.
  • [9] Bovier, A. and Hartung, L. (2014). The extremal process of two-speed branching Brownian motion. Electron. J. Probab. 19 no. 18, 28.
  • [10] Bovier, A. and Hartung, L. (2015). Variable speed branching Brownian motion 1. Extremal processes in the weak correlation regime. ALEA Lat. Am. J. Probab. Math. Stat. 12 261–291.
  • [11] Bramson, M. (1983). Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Amer. Math. Soc. 44 iv$+$190.
  • [12] Bramson, M. and Zeitouni, O. (2009). Tightness for a family of recursion equations. Ann. Probab. 37 615–653.
  • [13] Bramson, M. and Zeitouni, O. (2012). Tightness of the recentered maximum of the two-dimensional discrete Gaussian free field. Comm. Pure Appl. Math. 65 1–20.
  • [14] Bramson, M. D. (1978). Maximal displacement of branching Brownian motion. Comm. Pure Appl. Math. 31 531–581.
  • [15] Chauvin, B. and Drmota, M. (2006). The random multisection problem, travelling waves and the distribution of the height of $m$-ary search trees. Algorithmica 46 299–327.
  • [16] Comets, F. and Popov, S. (2007). On multidimensional branching random walks in random environment. Ann. Probab. 35 68–114.
  • [17] Comets, F. and Popov, S. (2007). Shape and local growth for multidimensional branching random walks in random environment. ALEA Lat. Am. J. Probab. Math. Stat. 3 273–299.
  • [18] Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications, 2nd ed. Applications of Mathematics (New York) 38. Springer, New York.
  • [19] Drewitz, A. (2008). Lyapunov exponents for the one-dimensional parabolic Anderson model with drift. Electron. J. Probab. 13 2283–2336.
  • [20] Drmota, M. (2003). An analytic approach to the height of binary search trees. II. J. ACM 50 333–374.
  • [21] Fang, M. and Zeitouni, O. (2012). Branching random walks in time inhomogeneous environments. Electron. J. Probab. 17 no. 67, 18.
  • [22] Fang, M. and Zeitouni, O. (2012). Slowdown for time inhomogeneous branching Brownian motion. J. Stat. Phys. 149 1–9.
  • [23] Freidlin, M. (1985). Functional Integration and Partial Differential Equations. Annals of Mathematics Studies 109. Princeton Univ. Press, Princeton, NJ.
  • [24] Gantert, N., Müller, S., Popov, S. and Vachkovskaia, M. (2010). Survival of branching random walks in random environment. J. Theoret. Probab. 23 1002–1014.
  • [25] Gärtner, J. and Freidlin, M. I. (1979). The propagation of concentration waves in periodic and random media. Dokl. Akad. Nauk SSSR 249 521–525.
  • [26] Gärtner, J. and König, W. (2005). The parabolic Anderson model. In Interacting Stochastic Systems 153–179. Springer, Berlin.
  • [27] Gärtner, J. and Molchanov, S. A. (1990). Parabolic problems for the Anderson model. I. Intermittency and related topics. Comm. Math. Phys. 132 613–655.
  • [28] Gikhman, I. I. and Skorokhod, A. V. (1969). Introduction to the Theory of Random Processes. Translated from the Russian by Scripta Technica, Inc. W. B. Saunders Co., Philadelphia.
  • [29] Greven, A. and den Hollander, F. (1992). Branching random walk in random environment: Phase transitions for local and global growth rates. Probab. Theory Related Fields 91 195–249.
  • [30] Gün, O., König, W. and Sekulović, O. (2013). Moment asymptotics for branching random walks in random environment. Electron. J. Probab. 18 no. 63, 18.
  • [31] Hamel, F., Nolen, J., Roquejoffre, J.-M. and Ryzhik, L. (2016). The logarithmic delay of KPP fronts in a periodic medium. J. Eur. Math. Soc. (JEMS) 18 465–505.
  • [32] Hammersley, J. M. (1974). Postulates for subadditive processes. Ann. Probab. 2 652–680.
  • [33] Harris, S. C. and Roberts, M. I. (2017). The many-to-few lemma and multiple spines. Ann. Inst. Henri Poincaré Probab. Stat. 53 226–242.
  • [34] Heil, H., Nakashima, M. and Yoshida, N. (2011). Branching random walks in random environment are diffusive in the regular growth phase. Electron. J. Probab. 16 1316–1340.
  • [35] Hu, Y. and Shi, Z. (2009). Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. Ann. Probab. 37 742–789.
  • [36] Hu, Y. and Yoshida, N. (2009). Localization for branching random walks in random environment. Stochastic Process. Appl. 119 1632–1651.
  • [37] Huang, C. and Liu, Q. (2014). Branching random walk with a random environment in time. Preprint. Available at arXiv:1407.7623.
  • [38] Ikeda, N., Nagasawa, M. and Watanabe, S. (1968). Branching Markov processes. I. J. Math. Kyoto Univ. 8 233–278.
  • [39] Ikeda, N., Nagasawa, M. and Watanabe, S. (1968). Branching Markov processes. II. J. Math. Kyoto Univ. 8 365–410.
  • [40] Ikeda, N., Nagasawa, M. and Watanabe, S. (1969). Branching Markov processes. III. J. Math. Kyoto Univ. 9 95–160.
  • [41] Kevei, P. and Mason, D. M. (2011). A note on a maximal Bernstein inequality. Bernoulli 17 1054–1062.
  • [42] Kingman, J. F. C. (1975). The first birth problem for an age-dependent branching process. Ann. Probab. 3 790–801.
  • [43] Kolmogorov, A., Pretrovskii, I. and Piskunov, N. (1937). Étude de l’équation de la diffusion avec croissance de la quantite de matière et son application à un problème biologique. Bull. Univ. État Moscou, Sér. Int., Sect. A: Math. et Mécan. 1, Fasc. 6 1–25.
  • [44] König, W. (2016). The Parabolic Anderson Model. Pathways in Mathematics. Birkhäuser/Springer, Cham.
  • [45] Lalley, S. and Sellke, T. (1988). Traveling waves in inhomogeneous branching Brownian motions. I. Ann. Probab. 16 1051–1062.
  • [46] Lalley, S. and Sellke, T. (1989). Travelling waves in inhomogeneous branching Brownian motions. II. Ann. Probab. 17 116–127.
  • [47] Liggett, T. M. (1985). An improved subadditive ergodic theorem. Ann. Probab. 13 1279–1285.
  • [48] Machado, F. P. and Popov, S. Y. (2000). One-dimensional branching random walks in a Markovian random environment. J. Appl. Probab. 37 1157–1163.
  • [49] Maillard, P. and Zeitouni, O. (2016). Slowdown in branching Brownian motion with inhomogeneous variance. Ann. Inst. Henri Poincaré Probab. Stat. 52 1144–1160.
  • [50] Mallein, B. (2015). Maximal displacement of a branching random walk in time-inhomogeneous environment. Stochastic Process. Appl. 125 3958–4019.
  • [51] Mallein, B. and Miłoś, P. (2018). Brownian motion and random walk above quenched random wall. Ann. Inst. Henri Poincaré Probab. Stat. 54 1877–1916.
  • [52] Mallein, B. and Miłoś, P. (2019). Maximal displacement of a supercritical branching random walk in a time-inhomogeneous random environment. Stochastic Process. Appl. 129 3239–3260.
  • [53] McDiarmid, C. (1995). Minimal positions in a branching random walk. Ann. Appl. Probab. 5 128–139.
  • [54] McKean, H. P. (1975). Application of Brownian motion to the equation of Kolmogorov–Petrovskii–Piskunov. Comm. Pure Appl. Math. 28 323–331.
  • [55] Merlevède, F., Peligrad, M. and Utev, S. (2006). Recent advances in invariance principles for stationary sequences. Probab. Surv. 3 1–36.
  • [56] Nakashima, M. (2011). Almost sure central limit theorem for branching random walks in random environment. Ann. Appl. Probab. 21 351–373.
  • [57] Newman, C. M. and Wright, A. L. (1981). An invariance principle for certain dependent sequences. Ann. Probab. 9 671–675.
  • [58] Nolen, J. (2011). A central limit theorem for pulled fronts in a random medium. Netw. Heterog. Media 6 167–194.
  • [59] Nolen, J., Roquejoffre, J.-M. and Ryzhik, L. (2015). Power-like delay in time inhomogeneous Fisher–KPP equations. Comm. Partial Differential Equations 40 475–505.
  • [60] Ortgiese, M. and Roberts, M. I. (2016). Intermittency for branching random walk in Pareto environment. Ann. Probab. 44 2198–2263.
  • [61] Reed, B. (2003). The height of a random binary search tree. J. ACM 50 306–332.
  • [62] Rio, E. (2013). Inequalities and limit theorems for weakly dependent sequences. Lecture.
  • [63] Shi, Z. (2015). Branching Random Walks. Lecture Notes in Math. 2151. Springer, Cham.