The Annals of Probability

Cutoff phenomenon for the asymmetric simple exclusion process and the biased card shuffling

Cyril Labbé and Hubert Lacoin

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We consider the biased card shuffling and the Asymmetric Simple Exclusion Process (ASEP) on the segment. We obtain the asymptotic of their mixing times: our results show that these two continuous-time Markov chains display cutoff. Our analysis combines several ingredients including: a study of the hydrodynamic profile for ASEP, the use of monotonic eigenfunctions, stochastic comparisons and concentration inequalities.

Article information

Source
Ann. Probab., Volume 47, Number 3 (2019), 1541-1586.

Dates
Received: November 2016
Revised: May 2018
First available in Project Euclid: 2 May 2019

Permanent link to this document
https://projecteuclid.org/euclid.aop/1556784026

Digital Object Identifier
doi:10.1214/18-AOP1290

Mathematical Reviews number (MathSciNet)
MR3945753

Zentralblatt MATH identifier
07067276

Subjects
Primary: 60J27: Continuous-time Markov processes on discrete state spaces
Secondary: 37A25: Ergodicity, mixing, rates of mixing 82C22: Interacting particle systems [See also 60K35]

Keywords
Card shuffling exclusion process ASEP mixing time cutoff

Citation

Labbé, Cyril; Lacoin, Hubert. Cutoff phenomenon for the asymmetric simple exclusion process and the biased card shuffling. Ann. Probab. 47 (2019), no. 3, 1541--1586. doi:10.1214/18-AOP1290. https://projecteuclid.org/euclid.aop/1556784026


Export citation

References

  • [1] Bahadoran, C. (2012). Hydrodynamics and hydrostatics for a class of asymmetric particle systems with open boundaries. Comm. Math. Phys. 310 1–24.
  • [2] Bardos, C., le Roux, A. Y. and Nédélec, J.-C. (1979). First order quasilinear equations with boundary conditions. Comm. Partial Differential Equations 4 1017–1034.
  • [3] Benassi, A. and Fouque, J.-P. (1987). Hydrodynamical limit for the asymmetric simple exclusion process. Ann. Probab. 15 546–560.
  • [4] Benjamini, I., Berger, N., Hoffman, C. and Mossel, E. (2005). Mixing times of the biased card shuffling and the asymmetric exclusion process. Trans. Amer. Math. Soc. 357 3013–3029.
  • [5] Bertini, L. and Giacomin, G. (1997). Stochastic Burgers and KPZ equations from particle systems. Comm. Math. Phys. 183 571–607.
  • [6] Bhakta, P., Miracle, S., Randall, D. and Streib, A. P. (2012). Mixing times of Markov chains for self-organizing lists and biased permutations. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms 1–15. SIAM, Philadelphia, PA.
  • [7] Billingsley, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley, New York.
  • [8] Bürger, R., Frid, H. and Karlsen, K. H. (2007). On the well-posedness of entropy solutions to conservation laws with a zero-flux boundary condition. J. Math. Anal. Appl. 326 108–120.
  • [9] Caputo, P., Lacoin, H., Martinelli, F., Simenhaus, F. and Toninelli, F. L. (2012). Polymer dynamics in the depinned phase: Metastability with logarithmic barriers. Probab. Theory Related Fields 153 587–641.
  • [10] Caputo, P., Liggett, T. M. and Richthammer, T. (2010). Proof of Aldous’ spectral gap conjecture. J. Amer. Math. Soc. 23 831–851.
  • [11] Derrida, B. and Lebowitz, J. L. (1998). Exact large deviation function in the asymmetric exclusion process. Phys. Rev. Lett. 80 209–213.
  • [12] Diaconis, P. and Shahshahani, M. (1987). Time to reach stationarity in the Bernoulli–Laplace diffusion model. SIAM J. Math. Anal. 18 208–218.
  • [13] Ferrari, P. L. (2008). The universal $\mathrm{Airy}_{1}$ and $\mathrm{Airy}_{2}$ processes in the totally asymmetric simple exclusion process. In Integrable Systems and Random Matrices. Contemp. Math. 458 321–332. Amer. Math. Soc., Providence, RI.
  • [14] Gärtner, J. (1988). Convergence towards Burgers’ equation and propagation of chaos for weakly asymmetric exclusion processes. Stochastic Process. Appl. 27 233–260.
  • [15] Greenberg, S., Pascoe, A. and Randall, D. (2009). Sampling biased lattice configurations using exponential metrics. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms 76–85. SIAM, Philadelphia, PA.
  • [16] Haddadan, S. and Winkler, P. (2017). Mixing of permutations by biased transposition. In 34th Symposium on Theoretical Aspects of Computer Science. LIPIcs. Leibniz Int. Proc. Inform. 66 Art. No. 41, 13. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern.
  • [17] Kipnis, C. and Landim, C. (1999). Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 320. Springer, Berlin.
  • [18] Labbé, C. (2017). Weakly asymmetric bridges and the KPZ equation. Comm. Math. Phys. 353 1261–1298.
  • [19] Labbé, C. and Lacoin, H. Mixing time and cutoff for the Weakly Asymmetric Simple Exclusion Process. Preprint. Available at arXiv:1805.12213.
  • [20] Lacoin, H. (2016). Mixing time and cutoff for the adjacent transposition shuffle and the simple exclusion. Ann. Probab. 44 1426–1487.
  • [21] Lacoin, H. (2016). The cutoff profile for the simple exclusion process on the circle. Ann. Probab. 44 3399–3430.
  • [22] Lee, T.-Y. and Yau, H.-T. (1998). Logarithmic Sobolev inequality for some models of random walks. Ann. Probab. 26 1855–1873.
  • [23] Lesigne, E. and Volný, D. (2001). Large deviations for martingales. Stochastic Process. Appl. 96 143–159.
  • [24] Levin, D. A. and Peres, Y. (2016). Mixing of the exclusion process with small bias. J. Stat. Phys. 165 1036–1050.
  • [25] Levin, D. A., Peres, Y. and Wilmer, E. L. (2009). Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI.
  • [26] Liggett, T. M. (2005). Interacting Particle Systems. Springer, Berlin.
  • [27] Málek, J., Nečas, J., Rokyta, M. and Ružička, M. (1996). Weak and Measure-Valued Solutions to Evolutionary PDEs. Applied Mathematics and Mathematical Computation 13. Chapman & Hall, London.
  • [28] Otto, F. (1996). Initial-boundary value problem for a scalar conservation law. C. R. Acad. Sci., Sér. I Math. 322 729–734.
  • [29] Rezakhanlou, F. (1991). Hydrodynamic limit for attractive particle systems on $\mathbf{Z}^{d}$. Comm. Math. Phys. 140 417–448.
  • [30] Rost, H. (1981). Nonequilibrium behaviour of a many particle process: Density profile and local equilibria. Z. Wahrsch. Verw. Gebiete 58 41–53.
  • [31] Vovelle, J. (2002). Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains. Numer. Math. 90 563–596.
  • [32] Wilson, D. B. (2004). Mixing times of Lozenge tiling and card shuffling Markov chains. Ann. Appl. Probab. 14 274–325.