The Annals of Probability

Alternating arm exponents for the critical planar Ising model

Hao Wu

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We derive the alternating arm exponents of the critical Ising model. We obtain six different patterns of alternating boundary arm exponents which correspond to the boundary conditions $(\ominus\oplus)$, $(\ominus\operatorname{free})$ and $(\operatorname{free}\operatorname{free})$, and the alternating interior arm exponents.

Article information

Source
Ann. Probab., Volume 46, Number 5 (2018), 2863-2907.

Dates
Received: June 2016
Revised: June 2017
First available in Project Euclid: 24 August 2018

Permanent link to this document
https://projecteuclid.org/euclid.aop/1535097641

Digital Object Identifier
doi:10.1214/17-AOP1241

Mathematical Reviews number (MathSciNet)
MR3846840

Zentralblatt MATH identifier
06964350

Subjects
Primary: 60J67: Stochastic (Schramm-)Loewner evolution (SLE)
Secondary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
Schramm–Loewner evolution critical planar Ising model arm exponent

Citation

Wu, Hao. Alternating arm exponents for the critical planar Ising model. Ann. Probab. 46 (2018), no. 5, 2863--2907. doi:10.1214/17-AOP1241. https://projecteuclid.org/euclid.aop/1535097641


Export citation

References

  • [1] Ahlfors, L. V. (2006). Lectures on Quasiconformal Mappings, 2nd ed. University Lecture Series 38. Amer. Math. Soc., Providence, RI.
  • [2] Ahlfors, L. V. (2010). Conformal Invariants: Topics in Geometric Function Theory. AMS Chelsea Publishing, Providence, RI. Reprint of the 1973 original, With a foreword by Peter Duren, F. W. Gehring and Brad Osgood.
  • [3] Alberts, T. and Kozdron, M. J. (2008). Intersection probabilities for a chordal SLE path and a semicircle. Electron. Commun. Probab. 13 448–460.
  • [4] Beffara, V. (2008). The dimension of the SLE curves. Ann. Probab. 36 1421–1452.
  • [5] Benoist, S., Duminil-Copin, H. and Hongler, C. (2016). Conformal invariance of crossing probabilities for the Ising model with free boundary conditions. Ann. Inst. Henri Poincaré Probab. Stat. 52 1784–1798.
  • [6] Chelkak, D. (2016). Robust discrete complex analysis: A toolbox. Ann. Probab. 44 628–683.
  • [7] Chelkak, D., Duminil-Copin, H. and Hongler, C. (2016). Crossing probabilities in topological rectangles for the critical planar FK–Ising model. Electron. J. Probab. 21 Paper No. 5, 28.
  • [8] Chelkak, D., Duminil-Copin, H., Hongler, C., Kemppainen, A. and Smirnov, S. (2014). Convergence of Ising interfaces to Schramm’s SLE curves. C. R. Math. Acad. Sci. Paris 352 157–161.
  • [9] Chelkak, D. and Smirnov, S. (2012). Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189 515–580.
  • [10] Dubédat, J. (2009). Duality of Schramm–Loewner evolutions. Ann. Sci. Éc. Norm. Supér. (4) 42 697–724.
  • [11] Duplantier, B. (2004). Conformal fractal geometry and boundary quantum gravity. In Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Part 2 365–482. Amer. Math. Soc., Providence, RI.
  • [12] Hongler, C. and Kytölä, K. (2013). Ising interfaces and free boundary conditions. J. Amer. Math. Soc. 26 1107–1189.
  • [13] Lawler, G. F. (2005). Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs 114. Amer. Math. Soc., Providence, RI.
  • [14] Lawler, G. F. (2015). Minkowski content of the intersection of a Schramm–Loewner evolution (SLE) curve with the real line. J. Math. Soc. Japan 67 1631–1669.
  • [15] Lawler, G. F., Schramm, O. and Werner, W. (2001). Values of Brownian intersection exponents. I. Half-plane exponents. Acta Math. 187 237–273.
  • [16] Lawler, G. F., Schramm, O. and Werner, W. (2002). One-arm exponent for critical 2D percolation. Electron. J. Probab. 7 no. 2, 13 pp. (electronic).
  • [17] Miller, J. and Sheffield, S. (2016). Imaginary geometry I: Interacting SLEs. Probab. Theory Related Fields 164 553–705.
  • [18] Miller, J. and Wu, H. (2017). Intersections of SLE Paths: The double and cut point dimension of SLE. Probab. Theory Related Fields 167 45–105.
  • [19] Pommerenke, C. (1992). Boundary Behaviour of Conformal Maps 299. Springer, Berlin.
  • [20] Rohde, S. and Schramm, O. (2005). Basic properties of SLE. Ann. of Math. (2) 161 883–924.
  • [21] Schramm, O. and Wilson, D. B. (2005). SLE coordinate changes. New York J. Math. 11 659–669 (electronic).
  • [22] Smirnov, S. and Werner, W. (2001). Critical exponents for two-dimensional percolation. Math. Res. Lett. 8 729–744.
  • [23] Viklund, F. J. and Lawler, G. F. (2012). Almost sure multifractal spectrum for the tip of an SLE curve. Acta Math. 209 265–322.
  • [24] Werner, W. and Wu, H. (2013). From CLE($\kappa$) to SLE($\kappa,\rho$). Electron. J. Probab. 18 1–20.
  • [25] Wu, H. (2018). Polychromatic arm exponents for the critical planar FK–Ising model. J. Stat. Phys. 170 1177–1196.
  • [26] Wu, H. and Zhan, D. (2017). Boundary arm exponents for SLE. Electron. J. Probab. 22 no. 89, 1–26.