The Annals of Probability

On the cycle structure of Mallows permutations

Alexey Gladkich and Ron Peled

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We study the length of cycles of random permutations drawn from the Mallows distribution. Under this distribution, the probability of a permutation $\pi\in\mathbb{S}_{n}$ is proportional to $q^{\operatorname{inv}(\pi)}$ where $q>0$ and $\operatorname{inv}(\pi)$ is the number of inversions in $\pi$.

We focus on the case that $q<1$ and show that the expected length of the cycle containing a given point is of order $\min\{(1-q)^{-2},n\}$. This marks the existence of two asymptotic regimes: with high probability, when $n$ tends to infinity with $(1-q)^{-2}\ll n$ then all cycles have size $o(n)$ whereas when $n$ tends to infinity with $(1-q)^{-2}\gg n$ then macroscopic cycles, of size proportional to $n$, emerge. In the second regime, we prove that the distribution of normalized cycle lengths follows the Poisson–Dirichlet law, as in a uniformly random permutation. The results bear formal similarity with a conjectured localization transition for random band matrices.

Further results are presented for the variance of the cycle lengths, the expected diameter of cycles and the expected number of cycles. The proofs rely on the exact sampling algorithm for the Mallows distribution and make use of a special diagonal exposure process for the graph of the permutation.

Article information

Source
Ann. Probab., Volume 46, Number 2 (2018), 1114-1169.

Dates
Received: January 2016
Revised: May 2017
First available in Project Euclid: 9 March 2018

Permanent link to this document
https://projecteuclid.org/euclid.aop/1520586277

Digital Object Identifier
doi:10.1214/17-AOP1202

Mathematical Reviews number (MathSciNet)
MR3773382

Zentralblatt MATH identifier
06864081

Subjects
Primary: 60C05: Combinatorial probability 05A05: Permutations, words, matrices
Secondary: 60F05: Central limit and other weak theorems 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82B23: Exactly solvable models; Bethe ansatz 82B26: Phase transitions (general) 60B99: None of the above, but in this section 60B20: Random matrices (probabilistic aspects; for algebraic aspects see 15B52)

Keywords
Mallows permutations cycle structure Poisson–Dirichlet law phase transition macroscopic cycles localization delocalization random band matrices

Citation

Gladkich, Alexey; Peled, Ron. On the cycle structure of Mallows permutations. Ann. Probab. 46 (2018), no. 2, 1114--1169. doi:10.1214/17-AOP1202. https://projecteuclid.org/euclid.aop/1520586277


Export citation

References

  • [1] Angel, O. (2003). Random infinite permutations and the cyclic time random walk. In Discrete Random Walks (Paris, 2003). Discrete Math. Theor. Comput. Sci. Proc., AC 9–16. Assoc. Discrete Math. Theor. Comput. Sci., Nancy.
  • [2] Basu, R. and Bhatnagar, N. (2017). Limit theorems for longest monotone subsequences in random Mallows permutations. Ann. Inst. Henri Poincaré Probab. Stat. 53 1934–1951.
  • [3] Benjamini, I., Berger, N., Hoffman, C. and Mossel, E. (2005). Mixing times of the biased card shuffling and the asymmetric exclusion process. Trans. Amer. Math. Soc. 357 3013–3029.
  • [4] Berestycki, N. (2011). Emergence of giant cycles and slowdown transition in random transpositions and $k$-cycles. Electron. J. Probab. 16 152–173.
  • [5] Betz, V. and Ueltschi, D. (2011). Spatial random permutations and Poisson–Dirichlet law of cycle lengths. Electron. J. Probab. 16 1173–1192.
  • [6] Bhatnagar, N. and Peled, R. (2015). Lengths of monotone subsequences in a Mallows permutation. Probab. Theory Related Fields 161 719–780.
  • [7] Borodin, A., Diaconis, P. and Fulman, J. (2010). On adding a list of numbers (and other one-dependent determinantal processes). Bull. Amer. Math. Soc. (N.S.) 47 639–670.
  • [8] Braverman, M. and Mossel, E. (2009). Sorting from noisy information. CoRR abs/0910.1191.
  • [9] Diaconis, P. and Ram, A. (2000). Analysis of systematic scan Metropolis algorithms using Iwahori–Hecke algebra techniques. Michigan Math. J. 48 157–190. Dedicated to William Fulton on the occasion of his 60th birthday.
  • [10] Diaconis, P. and Shahshahani, M. (1981). Generating a random permutation with random transpositions. Z. Wahrsch. Verw. Gebiete 57 159–179.
  • [11] Ewens, W. J. (1972). The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3 87–112; erratum, ibid. 3 (1972), 240; erratum, ibid. 3 (1972), 376.
  • [12] Feng, S. (2010). The Poisson–Dirichlet Distribution and Related Topics: Models and Asymptotic Behaviors. Springer, Heidelberg.
  • [13] Gnedin, A. and Olshanski, G. (2010). $q$-exchangeability via quasi-invariance. Ann. Probab. 38 2103–2135.
  • [14] Gnedin, A. and Olshanski, G. (2012). The two-sided infinite extension of the Mallows model for random permutations. Adv. in Appl. Math. 48 615–639.
  • [15] Hammond, A. (2013). Infinite cycles in the random stirring model on trees. Bull. Inst. Math. Acad. Sin. (N.S.) 8 85–104.
  • [16] Hammond, A. (2015). Sharp phase transition in the random stirring model on trees. Probab. Theory Related Fields 161 429–448.
  • [17] Kenyon, R., Král’, D., Radin, C. and Winkler, P. Permutations with fixed pattern densities. Available at arXiv:1506.02340.
  • [18] Kotecký, R., Miłoś, P. and Ueltschi, D. The random interchange process on the hypercube. Available at arXiv:1509.02067.
  • [19] Levin, D. A., Peres, Y. and Wilmer, E. L. (2009). Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI.
  • [20] Mallows, C. L. (1957). Non-null ranking models. I. Biometrika 44 114–130.
  • [21] Mueller, C. and Starr, S. (2013). The length of the longest increasing subsequence of a random Mallows permutation. J. Theoret. Probab. 26 514–540.
  • [22] Mukherjee, S. (2016). Fixed points and cycle structure of random permutations. Electron. J. Probab. 21 Paper No. 40, 18.
  • [23] Olshanski, G. (2011). Random permutations and related topics. In The Oxford Handbook of Random Matrix Theory 510–533. Oxford Univ. Press, Oxford.
  • [24] Schramm, O. (2005). Compositions of random transpositions. Israel J. Math. 147 221–243.
  • [25] Spencer, T. (2011). Random banded and sparse matrices. In The Oxford Handbook of Random Matrix Theory 471–488. Oxford Univ. Press, Oxford.
  • [26] Stanley, R. P. (2012). Enumerative Combinatorics. Volume 1, 2nd ed. Cambridge Studies in Advanced Mathematics 49. Cambridge Univ. Press, Cambridge.
  • [27] Starr, S. (2009). Thermodynamic limit for the Mallows model on $S_{n}$. J. Math. Phys. 50 095208, 15.
  • [28] Starr, S. and Walters, M. Phase uniqueness for the Mallows measure on permutations. Available at arXiv:1502.03727.
  • [29] Sütő, A. (2002). Percolation transition in the Bose gas. II. J. Phys. A 35 6995–7002.
  • [30] Tóth, B. (1993). Improved lower bound on the thermodynamic pressure of the spin $1/2$ Heisenberg ferromagnet. Lett. Math. Phys. 28 75–84.