The Annals of Probability

The sharp threshold for the Duarte model

Béla Bollobás, Hugo Duminil-Copin, Robert Morris, and Paul Smith

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


The class of critical bootstrap percolation models in two dimensions was recently introduced by Bollobás, Smith and Uzzell, and the critical threshold for percolation was determined up to a constant factor for all such models by the authors of this paper. Here, we develop and refine the techniques introduced in that paper in order to determine a sharp threshold for the Duarte model. This resolves a question of Mountford from 1995, and is the first result of its type for a model with drift.

Article information

Ann. Probab., Volume 45, Number 6B (2017), 4222-4272.

Received: March 2016
Revised: October 2016
First available in Project Euclid: 12 December 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 60C05: Combinatorial probability

Bootstrap percolation monotone cellular automata Duarte model critical probability sharp threshold


Bollobás, Béla; Duminil-Copin, Hugo; Morris, Robert; Smith, Paul. The sharp threshold for the Duarte model. Ann. Probab. 45 (2017), no. 6B, 4222--4272. doi:10.1214/16-AOP1163.

Export citation


  • [1] Aizenman, M. and Lebowitz, J. L. (1988). Metastability effects in bootstrap percolation. J. Phys. A 21 3801–3813.
  • [2] Balister, P., Bollobás, B., Przykucki, M. and Smith, P. (2016). Subcritical $\mathcal{U}$-bootstrap percolation models have non-trivial phase transitions. Trans. Amer. Math. Soc. 368 7385–7411.
  • [3] Balogh, J., Bollobás, B., Duminil-Copin, H. and Morris, R. (2012). The sharp threshold for bootstrap percolation in all dimensions. Trans. Amer. Math. Soc. 364 2667–2701.
  • [4] Balogh, J., Bollobás, B. and Morris, R. (2009). Bootstrap percolation in three dimensions. Ann. Probab. 37 1329–1380.
  • [5] Bollobás, B., Duminil-Copin, H., Morris, R. and Smith, P. J. Universality of two-dimensional critical cellular automata. Preprint. Available at arXiv:1406.6680.
  • [6] Bollobás, B., Smith, P. and Uzzell, A. (2015). Monotone cellular automata in a random environment. Combin. Probab. Comput. 24 687–722.
  • [7] Cancrini, N., Martinelli, F., Roberto, C. and Toninelli, C. (2008). Kinetically constrained spin models. Probab. Theory Related Fields 140 459–504.
  • [8] Cerf, R. and Cirillo, E. N. M. (1999). Finite size scaling in three-dimensional bootstrap percolation. Ann. Probab. 27 1837–1850.
  • [9] Cerf, R. and Manzo, F. (2002). The threshold regime of finite volume bootstrap percolation. Stochastic Process. Appl. 101 69–82.
  • [10] Chalupa, J., Leath, P. L. and Reich, G. R. (1979). Bootstrap percolation on a Bethe lattice. J. Phys. C, Solid State Phys. 12 L31–L35.
  • [11] Duarte, J. A. M. S. (1989). Simulation of a cellular automaton with an oriented bootstrap rule. Phys. A 157 1075–1079.
  • [12] Duminil-Copin, H. and Holroyd, A. E. Finite volume bootstrap percolation with threshold rules on $\mathbb{Z}^{2}$: Balanced case. Preprint. Available at
  • [13] Duminil-Copin, H. and van Enter, A. C. D. (2013). Sharp metastability threshold for an anisotropic bootstrap percolation model. Ann. Probab. 41 1218–1242.
  • [14] Fontes, L. R., Schonmann, R. H. and Sidoravicius, V. (2002). Stretched exponential fixation in stochastic Ising models at zero temperature. Comm. Math. Phys. 228 495–518.
  • [15] Gravner, J., Holroyd, A. E. and Morris, R. (2012). A sharper threshold for bootstrap percolation in two dimensions. Probab. Theory Related Fields 153 1–23.
  • [16] Holroyd, A. E. (2003). Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theory Related Fields 125 195–224.
  • [17] Holroyd, A. E., Liggett, T. M. and Romik, D. (2004). Integrals, partitions, and cellular automata. Trans. Amer. Math. Soc. 356 3349–3368.
  • [18] Morris, R. The second order term for bootstrap percolation in two dimensions. Preprint. Available at
  • [19] Morris, R. (2011). Zero-temperature Glauber dynamics on $\mathbb{Z}^{d}$. Probab. Theory Related Fields 149 417–434.
  • [20] Mountford, T. S. (1995). Critical length for semi-oriented bootstrap percolation. Stochastic Process. Appl. 56 185–205.
  • [21] Sauer, N. (1972). On the density of families of sets. J. Combin. Theory Ser. A 13 145–147.
  • [22] Schonmann, R. H. (1990). Critical points of two-dimensional bootstrap percolation-like cellular automata. J. Stat. Phys. 58 1239–1244.
  • [23] Schonmann, R. H. (1992). On the behavior of some cellular automata related to bootstrap percolation. Ann. Probab. 20 174–193.
  • [24] Shelah, S. (1972). A combinatorial problem; stability and order for models and theories in infinitary languages. Pacific J. Math. 41 247–261.
  • [25] van Enter, A. C. D. and Fey, A. (2012). Metastability thresholds for anisotropic bootstrap percolation in three dimensions. J. Stat. Phys. 147 97–112.