Open Access
November 2017 The number of open paths in oriented percolation
Olivier Garet, Jean-Baptiste Gouéré, Régine Marchand
Ann. Probab. 45(6A): 4071-4100 (November 2017). DOI: 10.1214/16-AOP1158
Abstract

We study the number $N_{n}$ of open paths of length $n$ in supercritical oriented percolation on $\mathbb{Z}^{d}\times\mathbb{N}$, with $d\ge1$, and we prove the existence of the connective constant for the supercritical oriented percolation cluster: on the percolation event $\{\inf N_{n}>0\}$, $N_{n}^{1/n}$ almost surely converges to a positive deterministic constant.

The proof relies on the introduction of adapted sequences of regenerating times, on subadditive arguments and on the properties of the coupled zone in supercritical oriented percolation. This global convergence result can be deepened to give directional limits and can be extended to more general random linear recursion equations known as linear stochastic evolutions.

References

1.

[1] Comets, F., Fukushima, R., Nakajima, S. and Yoshida, N. (2015). Limiting results for the free energy of directed polymers in random environment with unbounded jumps. J. Stat. Phys. 161 577–597.[1] Comets, F., Fukushima, R., Nakajima, S. and Yoshida, N. (2015). Limiting results for the free energy of directed polymers in random environment with unbounded jumps. J. Stat. Phys. 161 577–597.

2.

[2] Comets, F., Popov, S. and Vachkovskaia, M. (2008). The number of open paths in an oriented $\rho$-percolation model. J. Stat. Phys. 131 357–379. MR2386584 10.1007/s10955-008-9506-2[2] Comets, F., Popov, S. and Vachkovskaia, M. (2008). The number of open paths in an oriented $\rho$-percolation model. J. Stat. Phys. 131 357–379. MR2386584 10.1007/s10955-008-9506-2

3.

[3] Comets, F., Shiga, T. and Yoshida, N. (2004). Probabilistic analysis of directed polymers in a random environment: A review. In Stochastic Analysis on Large Scale Interacting Systems. Adv. Stud. Pure Math. 39 115–142. Math. Soc. Japan, Tokyo.[3] Comets, F., Shiga, T. and Yoshida, N. (2004). Probabilistic analysis of directed polymers in a random environment: A review. In Stochastic Analysis on Large Scale Interacting Systems. Adv. Stud. Pure Math. 39 115–142. Math. Soc. Japan, Tokyo.

4.

[4] Darling, R. W. R. (1991). The Lyapunov exponent for products of infinite-dimensional random matrices. In Lyapunov Exponents (Oberwolfach, 1990). Lecture Notes in Math. 1486 206–215. Springer, Berlin.[4] Darling, R. W. R. (1991). The Lyapunov exponent for products of infinite-dimensional random matrices. In Lyapunov Exponents (Oberwolfach, 1990). Lecture Notes in Math. 1486 206–215. Springer, Berlin.

5.

[5] Durrett, R. (1991). The contact process, 1974–1989. In Mathematics of Random Media (Blacksburg, VA, 1989). Lectures in Applied Mathematics 27 1–18. Amer. Math. Soc., Providence, RI.[5] Durrett, R. (1991). The contact process, 1974–1989. In Mathematics of Random Media (Blacksburg, VA, 1989). Lectures in Applied Mathematics 27 1–18. Amer. Math. Soc., Providence, RI.

6.

[6] Fukushima, R. and Yoshida, N. (2012). On exponential growth for a certain class of linear systems. ALEA Lat. Am. J. Probab. Math. Stat. 9 323–336.[6] Fukushima, R. and Yoshida, N. (2012). On exponential growth for a certain class of linear systems. ALEA Lat. Am. J. Probab. Math. Stat. 9 323–336.

7.

[7] Garet, O. and Marchand, R. (2012). Asymptotic shape for the contact process in random environment. Ann. Appl. Probab. 22 1362–1410.[7] Garet, O. and Marchand, R. (2012). Asymptotic shape for the contact process in random environment. Ann. Appl. Probab. 22 1362–1410.

8.

[8] Garet, O. and Marchand, R. (2014). Large deviations for the contact process in random environment. Ann. Probab. 42 1438–1479.[8] Garet, O. and Marchand, R. (2014). Large deviations for the contact process in random environment. Ann. Probab. 42 1438–1479.

9.

[9] Kesten, H. and Sidoravicius, V. (2010). A problem in last-passage percolation. Braz. J. Probab. Stat. 24 300–320.[9] Kesten, H. and Sidoravicius, V. (2010). A problem in last-passage percolation. Braz. J. Probab. Stat. 24 300–320.

10.

[10] Lacoin, H. (2012). Existence of an intermediate phase for oriented percolation. Electron. J. Probab. 17 no. 41, 17.[10] Lacoin, H. (2012). Existence of an intermediate phase for oriented percolation. Electron. J. Probab. 17 no. 41, 17.

11.

[11] Lacoin, H. (2014). Non-coincidence of quenched and annealed connective constants on the supercritical planar percolation cluster. Probab. Theory Related Fields 159 777–808. MR3230008 10.1007/s00440-013-0520-1[11] Lacoin, H. (2014). Non-coincidence of quenched and annealed connective constants on the supercritical planar percolation cluster. Probab. Theory Related Fields 159 777–808. MR3230008 10.1007/s00440-013-0520-1

12.

[12] Yoshida, N. (2008). Phase transitions for the growth rate of linear stochastic evolutions. J. Stat. Phys. 133 1033–1058.[12] Yoshida, N. (2008). Phase transitions for the growth rate of linear stochastic evolutions. J. Stat. Phys. 133 1033–1058.
Copyright © 2017 Institute of Mathematical Statistics
Olivier Garet, Jean-Baptiste Gouéré, and Régine Marchand "The number of open paths in oriented percolation," The Annals of Probability 45(6A), 4071-4100, (November 2017). https://doi.org/10.1214/16-AOP1158
Received: 1 November 2015; Published: November 2017
Vol.45 • No. 6A • November 2017
Back to Top