The Annals of Probability

Relative complexity of random walks in random scenery in the absence of a weak invariance principle for the local times

George Deligiannidis and Zemer Kosloff

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We answer a question of Aaronson about the relative complexity of Random Walks in Random Sceneries driven by either aperiodic two-dimensional random walks, two-dimensional Simple Random walk, or by aperiodic random walks in the domain of attraction of the Cauchy distribution. A key step is proving that the range of the random walk satisfies the Fölner property almost surely.

Article information

Source
Ann. Probab., Volume 45, Number 4 (2017), 2505-2532.

Dates
Received: May 2015
Revised: December 2015
First available in Project Euclid: 11 August 2017

Permanent link to this document
https://projecteuclid.org/euclid.aop/1502438433

Digital Object Identifier
doi:10.1214/16-AOP1118

Mathematical Reviews number (MathSciNet)
MR3693968

Zentralblatt MATH identifier
1380.37011

Subjects
Primary: 37A35: Entropy and other invariants, isomorphism, classification 60F05: Central limit and other weak theorems
Secondary: 37A05: Measure-preserving transformations

Keywords
Random walk in random scenery relative complexity entropy Fölner sequence

Citation

Deligiannidis, George; Kosloff, Zemer. Relative complexity of random walks in random scenery in the absence of a weak invariance principle for the local times. Ann. Probab. 45 (2017), no. 4, 2505--2532. doi:10.1214/16-AOP1118. https://projecteuclid.org/euclid.aop/1502438433


Export citation

References

  • [1] Aaronson, J. (2012). Relative complexity of random walks in random sceneries. Ann. Probab. 40 2460–2482.
  • [2] Austin, T. (2014). Scenery entropy as an invariant of RWRS processes. Preprint. Available at arXiv:1405.1468.
  • [3] Ball, K. (2003). Entropy and $\sigma$-algebra equivalence of certain random walks on random sceneries. Israel J. Math. 137 35–60.
  • [4] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation. Cambridge Univ. Press, Cambridge.
  • [5] Bolthausen, E. (1989). A central limit theorem for two-dimensional random walks in random sceneries. Ann. Probab. 17 108–115.
  • [6] Borodin, A. N. (1981). The asymptotic behavior of local times of recurrent random walks with finite variance. Teor. Veroyatn. Primen. 26 769–783.
  • [7] Borodin, A. N. (1984). Asymptotic behavior of local times of recurrent random walks with infinite variance. Teor. Veroyatn. Primen. 29 312–326.
  • [8] Castell, F., Guillotin-Plantard, N. and Pène, F. (2013). Limit theorems for one and two-dimensional random walks in random scenery. Ann. Inst. Henri Poincaré Probab. Stat. 49 506–528.
  • [9] Černý, J. (2007). Moments and distribution of the local time of a two-dimensional random walk. Stochastic Process. Appl. 117 262–270.
  • [10] Danilenko, A. I. and Park, K. K. (2002). Generators and Bernoullian factors for amenable actions and cocycles on their orbits. Ergodic Theory Dynam. Systems 22 1715–1745.
  • [11] Deligiannidis, G. and Sergey, U. (2015). Optimal bounds for self-intersection local times. Preprint. Available at arXiv:1505.07956.
  • [12] Deligiannidis, G. and Sergey, U. (2011). Computation of the asymptotics of the variance of the number of self-intersections of stable random walks using the Wiener–Darboux theory. Sibirsk. Mat. Zh. 52 809–822.
  • [13] den Hollander, F. and Steif, J. E. (1997). Mixing properties of the generalized $T,T^{-1}$-process. J. Anal. Math. 72 165–202.
  • [14] Durrett, R. (2010). Probability: Theory and Examples, 4th ed. Cambridge Univ. Press, Cambridge.
  • [15] Dvoretzky, A. and Erdös, P. (1951). Some problems on random walk in space. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950 353–367. Univ. California Press, Berkeley.
  • [16] Ferenczi, S. (1997). Measure-theoretic complexity of ergodic systems. Israel J. Math. 100 189–207.
  • [17] Kalikow, S. A. (1982). $T,T^{-1}$ transformation is not loosely Bernoulli. Ann. of Math. (2) 115 393–409.
  • [18] Katok, A. and Thouvenot, J.-P. (1997). Slow entropy type invariants and smooth realization of commuting measure-preserving transformations. Ann. Inst. Henri Poincaré Probab. Stat. 33 323–338.
  • [19] Katznelson, Y. and Weiss, B. (1972). Commuting measure-preserving transformations. Israel J. Math. 12 161–173.
  • [20] Kesten, H. and Spitzer, F. (1979). A limit theorem related to a new class of self-similar processes. Z. Wahrsch. Verw. Gebiete 50 5–25.
  • [21] Kieffer, J. C. (1975). A generalized Shannon–McMillan theorem for the action of an amenable group on a probability space. Ann. Probab. 3 1031–1037.
  • [22] Krieger, W. (1970). On entropy and generators of measure-preserving transformations. Trans. Amer. Math. Soc. 149 453–464.
  • [23] Lawler, G. F. (1991). Intersections of Random Walks. Birkhäuser, Boston, MA.
  • [24] Lawler, G. F. and Limic, V. (2010). Random Walk: A Modern Introduction. Cambridge Univ. Press, Cambridge.
  • [25] Le Gall, J.-F. and Rosen, J. (1991). The range of stable random walks. Ann. Probab. 19 650–705.
  • [26] Ornstein, D. (1970). Bernoulli shifts with the same entropy are isomorphic. Adv. Math. 4 337–352.
  • [27] Rudolph, D. J. (1988). Asymptotically Brownian skew products give non-loosely Bernoulli $K$-automorphisms. Invent. Math. 91 105–128.