The Annals of Probability

Global well-posedness of the dynamic $\Phi^{4}$ model in the plane

Jean-Christophe Mourrat and Hendrik Weber

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We show global well-posedness of the dynamic $\Phi^{4}$ model in the plane. The model is a nonlinear stochastic PDE that can only be interpreted in a “renormalised” sense. Solutions take values in suitable weighted Besov spaces of negative regularity.

Article information

Ann. Probab., Volume 45, Number 4 (2017), 2398-2476.

Received: January 2015
Revised: February 2016
First available in Project Euclid: 11 August 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 81T27: Continuum limits 81T40: Two-dimensional field theories, conformal field theories, etc. 60H15: Stochastic partial differential equations [See also 35R60] 35K55: Nonlinear parabolic equations

Nonlinear stochastic PDE stochastic quantisation equation quantum field theory weighted Besov space


Mourrat, Jean-Christophe; Weber, Hendrik. Global well-posedness of the dynamic $\Phi^{4}$ model in the plane. Ann. Probab. 45 (2017), no. 4, 2398--2476. doi:10.1214/16-AOP1116.

Export citation


  • [1] Aizenman, M. (1982). Geometric analysis of $\varphi^{4}$ fields and Ising models. I, II. Comm. Math. Phys. 86 1–48.
  • [2] Albeverio, S. and Röckner, M. (1991). Stochastic differential equations in infinite dimensions: Solutions via Dirichlet forms. Probab. Theory Related Fields 89 347–386.
  • [3] Bahouri, H., Chemin, J.-Y. and Danchin, R. (2011). Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 343. Springer, Heidelberg.
  • [4] Catellier, R. and Chouk, K. (2013). Paracontrolled distributions and the 3-dimensional stochastic quantization equation. Preprint. Available at arXiv:1310.6869.
  • [5] Da Prato, G. and Debussche, A. (2003). Strong solutions to the stochastic quantization equations. Ann. Probab. 31 1900–1916.
  • [6] Edmunds, D. E. and Triebel, H. (1996). Function Spaces, Entropy Numbers, Differential Operators. Cambridge Tracts in Mathematics 120. Cambridge Univ. Press, Cambridge.
  • [7] Glimm, J. and Jaffe, A. (1981). Quantum Physics. Springer, New York.
  • [8] Glimm, J., Jaffe, A. and Spencer, T. (1975). Phase transitions for $\phi_{2}^{4}$ quantum fields. Comm. Math. Phys. 45 203–216.
  • [9] Gubinelli, M., Imkeller, P. and Perkowski, N. (2015). Paraproducts, rough paths and controlled distributions. Forum Math. Pi 3. e6, 75 pp.
  • [10] Hairer, M. (2014). A theory of regularity structures. Invent. Math. 198 269–504.
  • [11] Hairer, M. and Labbé, C. (2015). A simple construction of the continuum parabolic Anderson model on $\mathbf{R}^{2}$. Electron. Commun. Probab. 20 no. 43, 11.
  • [12] Hairer, M. and Labbé, C. (2016). Multiplicative stochastic heat equations on the whole space. J. Eur. Math. Soc. (JEMS). To appear. Available at arXiv:1504.07162.
  • [13] Iwata, K. (1987). An infinite-dimensional stochastic differential equation with state space $C(\mathbf{R})$. Probab. Theory Related Fields 74 141–159.
  • [14] Jona-Lasinio, G. and Mitter, P. K. (1985). On the stochastic quantization of field theory. Comm. Math. Phys. 101 409–436.
  • [15] Kupiainen, A. (2016). Renormalization group and stochastic PDEs. Ann. Henri Poincaré 17 497–535.
  • [16] Meyer, Y. (1989). Wavelets and operators. In Analysis at Urbana, Vol. I (Urbana, IL, 19861987). London Mathematical Society Lecture Note Series 137 256–365. Cambridge Univ. Press, Cambridge.
  • [17] Mikulevicius, R. and Rozovskii, B. L. (1999). Martingale problems for stochastic PDE’s. In Stochastic Partial Differential Equations: Six Perspectives. Math. Surveys Monogr. 64 243–325. Amer. Math. Soc., Providence, RI.
  • [18] Mourrat, J.-C. and Weber, H. (2017). Convergence of the two-dimensional dynamic Ising-Kac model to $\Phi_{2}^{4}$. Comm. Pure Appl. Math. 70 717–712.
  • [19] Nualart, D. (2006). The Malliavin Calculus and Related Topics, 2nd ed. Springer, Berlin.
  • [20] Parisi, G. and Wu, Y. S. (1981). Perturbation theory without gauge fixing. Sci. Sinica 24 483–496.
  • [21] Röckner, M. and Zhang, T. S. (1992). Uniqueness of generalized Schrödinger operators and applications. J. Funct. Anal. 105 187–231.
  • [22] Rodino, L. (1993). Linear Partial Differential Operators in Gevrey Spaces. World Scientific, River Edge, NJ.
  • [23] Triebel, H. (2006). Theory of Function Spaces. III. Monographs in Mathematics 100. Birkhäuser, Basel.