The Annals of Probability

Percolation on the stationary distributions of the voter model

Balázs Ráth and Daniel Valesin

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

The voter model on $\mathbb{Z}^{d}$ is a particle system that serves as a rough model for changes of opinions among social agents or, alternatively, competition between biological species occupying space. When $d\geq3$, the set of (extremal) stationary distributions is a family of measures $\mu_{\alpha}$, for $\alpha$ between 0 and 1. A configuration sampled from $\mu_{\alpha}$ is a strongly correlated field of 0’s and 1’s on $\mathbb{Z}^{d}$ in which the density of 1’s is $\alpha$. We consider such a configuration as a site percolation model on $\mathbb{Z}^{d}$. We prove that if $d\geq5$, the probability of existence of an infinite percolation cluster of 1’s exhibits a phase transition in $\alpha$. If the voter model is allowed to have sufficiently spread-out interactions, we prove the same result for $d\geq3$.

Article information

Source
Ann. Probab., Volume 45, Number 3 (2017), 1899-1951.

Dates
Received: February 2015
Revised: February 2016
First available in Project Euclid: 15 May 2017

Permanent link to this document
https://projecteuclid.org/euclid.aop/1494835234

Digital Object Identifier
doi:10.1214/16-AOP1104

Mathematical Reviews number (MathSciNet)
MR3650418

Zentralblatt MATH identifier
06754789

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82C22: Interacting particle systems [See also 60K35] 82B43: Percolation [See also 60K35]

Keywords
Interacting particle systems voter model percolation

Citation

Ráth, Balázs; Valesin, Daniel. Percolation on the stationary distributions of the voter model. Ann. Probab. 45 (2017), no. 3, 1899--1951. doi:10.1214/16-AOP1104. https://projecteuclid.org/euclid.aop/1494835234


Export citation

References

  • [1] Arratia, R. (1983). Site recurrence for annihilating random walks on $\textbf{Z}_{d}$. Ann. Probab. 11 706–713.
  • [2] Bramson, M., Cox, J. T. and Le Gall, J.-F. (2001). Super-Brownian limits of voter model clusters. Ann. Probab. 29 1001–1032.
  • [3] Bramson, M. and Griffeath, D. (1980). Asymptotics for interacting particle systems on $\textbf{Z}^{d}$. Ann. Probab. 7 418–432.
  • [4] Bricmont, J., Lebowitz, J. L. and Maes, C. (1987). Percolation in strongly correlated systems: The massless Gaussian field. J. Stat. Phys. 48 1249–1268.
  • [5] Clifford, P. and Sudbury, A. (1973). A model for spatial conflict. Biometrika 60 581–588.
  • [6] Cox, J. T., Durrett, R. and Perkins, E. A. (2000). Rescaled voter models converge to super-Brownian motion. Ann. Probab. 28 185–234.
  • [7] Cox, J. T. and Perkins, E. A. (2014). A complete convergence theorem for voter model perturbations. Ann. Appl. Probab. 24 150–197.
  • [8] Erdős, P. and Ney, P. (1974). Some problems on random intervals and annihilating particles. Ann. Probab. 2 828–839.
  • [9] Griffeath, D. (1979). Additive and Cancellative Interacting Particle Systems. Lecture Notes in Math. 724. Springer, Berlin.
  • [10] Grimmett, G. (1999). Percolation, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 321. Springer, Berlin.
  • [11] Halperin, B. I. and Weinrib, A. (1983). Critical phenomena in systems with long-range-correlated quenched disorder. Phys. Rev. B 27 413–427.
  • [12] Hara, T., van der Hofstad, R. and Slade, G. (2003). Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models. Ann. Probab. 31 349–408.
  • [13] Hardy, G. H., Littlewood, J. E. and Pólya, G. (1952). Inequalities, 2nd ed. Cambridge Univ. Press, Cambridge.
  • [14] Holley, R. A. and Liggett, T. M. (1975). Ergodic theorems for weakly interacting infinite systems and the voter model. Ann. Probab. 3 643–663.
  • [15] Holmes, M., Mohylevskyy, Y. and Newman, C. M. (2015). The voter model chordal interface in two dimensions. J. Stat. Phys. 159 937–957.
  • [16] Kallenberg, O. (1997). Foundations of Modern Probability. Springer, New York.
  • [17] Kesten, H. (1982). Percolation Theory for Mathematicians. Birkhäuser, Boston, MA.
  • [18] Klebaner, F. C. (2005). Introduction to Stochastic Calculus with Applications, 2nd ed. Imperial College Press, London.
  • [19] Lawler, G. F. (1991). Intersections of Random Walks. Birkhäuser, Boston, MA.
  • [20] Lebowitz, J. L. and Saleur, H. (1986). Percolation in strongly correlated systems. Phys. A 138 194–205.
  • [21] Liggett, T. M. (1985). Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 276. Springer, New York.
  • [22] Liggett, T. M. and Steif, J. E. (2006). Stochastic domination: The contact process, Ising models and FKG measures. Ann. Inst. Henri Poincaré Probab. Stat. 42 223–243.
  • [23] Marinov, V. (2007). Percolation in correlated systems. Ph.D. thesis, Rutgers University.
  • [24] Marinov, V. I. and Lebowitz, J. L. (2006). Percolation in the harmonic crystal and voter model in three dimensions. Phys. Rev. E (3) 74 031120, 7.
  • [25] Peierls, R. (1936). On Ising’s model of ferromagnetism. Math. Proc. Cambridge Philos. Soc. 32 477–481.
  • [26] Perkins, E. (2002). Dawson-Watanabe superprocesses and measure-valued diffusions. In Lectures on Probability Theory and Statistics (Saint-Flour, 1999). Lecture Notes in Math. 1781 125–324. Springer, Berlin.
  • [27] Perkins, E. A. (1995). Measure-valued branching diffusions and interactions. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) 1036–1046. Birkhäuser, Basel.
  • [28] Ráth, B. (2015). A short proof of the phase transition for the vacant set of random interlacements. Electron. Commun. Probab. 20 no. 3, 11.
  • [29] Rodriguez, P.-F. and Sznitman, A.-S. (2013). Phase transition and level-set percolation for the Gaussian free field. Comm. Math. Phys. 320 571–601.
  • [30] Schwartz, D. (1978). On hitting probabilities for an annihilating particle model. Ann. Probab. 6 398–403.
  • [31] Sidoravicius, V. and Sznitman, A.-S. (2009). Percolation for the vacant set of random interlacements. Comm. Pure Appl. Math. 62 831–858.
  • [32] Sznitman, A.-S. (2010). Vacant set of random interlacements and percolation. Ann. of Math. (2) 171 2039–2087.
  • [33] Sznitman, A.-S. (2012). Decoupling inequalities and interlacement percolation on $G\times\mathbb{Z}$. Invent. Math. 187 645–706.
  • [34] van den Berg, J. (2011). Sharpness of the percolation transition in the two-dimensional contact process. Ann. Appl. Probab. 21 374–395.
  • [35] van den Berg, J., Björnberg, J. E. and Heydenreich, M. (2015). Sharpness versus robustness of the percolation transition in 2d contact processes. Stochastic Process. Appl. 125 513–537.
  • [36] Weinrib, A. (1984). Long-range correlated percolation. Phys. Rev. B (3) 29 387–395.
  • [37] Williams, D. (1991). Probability with Martingales. Cambridge Univ. Press, Cambridge.