The Annals of Probability

Ferromagnetic Ising measures on large locally tree-like graphs

Anirban Basak and Amir Dembo

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We consider the ferromagnetic Ising model on a sequence of graphs $\mathsf{G}_{n}$ converging locally weakly to a rooted random tree. Generalizing [Probab. Theory Related Fields 152 (2012) 31–51], under an appropriate “continuity” property, we show that the Ising measures on these graphs converge locally weakly to a measure, which is obtained by first picking a random tree, and then the symmetric mixture of Ising measures with $+$ and $-$ boundary conditions on that tree. Under the extra assumptions that $\mathsf{G}_{n}$ are edge-expanders, we show that the local weak limit of the Ising measures conditioned on positive magnetization is the Ising measure with $+$ boundary condition on the limiting tree. The “continuity” property holds except possibly for countable many choices of $\beta$, which for limiting trees of minimum degree at least three, are all within certain explicitly specified compact interval. We further show the edge-expander property for (most of) the configuration model graphs corresponding to limiting (multi-type) Galton–Watson trees.

Article information

Source
Ann. Probab., Volume 45, Number 2 (2017), 780-823.

Dates
Received: December 2013
Revised: October 2015
First available in Project Euclid: 31 March 2017

Permanent link to this document
https://projecteuclid.org/euclid.aop/1490947308

Digital Object Identifier
doi:10.1214/15-AOP1075

Mathematical Reviews number (MathSciNet)
MR3630287

Zentralblatt MATH identifier
1372.05032

Subjects
Primary: 05C05: Trees 05C80: Random graphs [See also 60B20] 05C81: Random walks on graphs 60J80: Branching processes (Galton-Watson, birth-and-death, etc.) 82B20: Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs 82B26: Phase transitions (general)

Keywords
Ising model random sparse graphs Gibbs measures local weak convergence

Citation

Basak, Anirban; Dembo, Amir. Ferromagnetic Ising measures on large locally tree-like graphs. Ann. Probab. 45 (2017), no. 2, 780--823. doi:10.1214/15-AOP1075. https://projecteuclid.org/euclid.aop/1490947308


Export citation

References

  • [1] Aizenman, M. (1980). Translation invariance and instability of phase coexistence in the two-dimensional Ising system. Comm. Math. Phys. 73 83–94.
  • [2] Aizenman, M. and Wehr, J. (1990). Rounding effects of quenched randomness on first-order phase transitions. Comm. Math. Phys. 130 489–528.
  • [3] Aldous, D. and Lyons, R. (2007). Processes on unimodular random networks. Electron. J. Probab. 12 1454–1508.
  • [4] Aldous, D. and Steele, J. M. (2004). The objective method: Probabilistic combinatorial optimization and local weak convergence. In Probability on Discrete Structures. Encyclopaedia Math. Sci. 110 1–72. Springer, Berlin.
  • [5] Athreya, K. B. and Ney, P. E. (2004). Branching Process. Dover Publications, Mineola, NY.
  • [6] Benjamini, I. and Schramm, O. (2001). Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6 13 pp. (electronic).
  • [7] Berger, N., Kenyon, C., Mossel, E. and Peres, Y. (2005). Glauber dynamics on trees and hyperbolic graphs. Probab. Theory Related Fields 131 311–340.
  • [8] Bodineau, T. (2006). Translation invariant Gibbs states for the Ising model. Probab. Theory Related Fields 135 153–168.
  • [9] Dembo, A. and Montanari, A. (2010). Ising models on locally tree-like graphs. Ann. Appl. Probab. 20 565–592.
  • [10] Dembo, A. and Montanari, A. (2010). Gibbs measures and phase transitions on sparse random graphs. Braz. J. Probab. Stat. 24 137–211.
  • [11] Dembo, A., Montanari, A. and Sun, N. (2013). Factor models on locally tree-like graphs. Ann. Probab. 41 4162–4213.
  • [12] De Sanctis, L. and Guerra, F. (2008). Mean field dilute ferromagnet: High temperature and zero temperature behavior. J. Stat. Phys. 132 759–785.
  • [13] Dobrushin, R. L. and Shlosman, S. B. (1985). The problem of translation invariance of Gibbs states at low temperatures. In Mathematical Physics Reviews, Vol. 5. Soviet Sci. Rev. Sect. C Math. Phys. Rev. 5 53–195. Harwood Academic Publ., Chur.
  • [14] Dommers, S., Giardinà, C. and van der Hofstad, R. (2010). Ising models on power-law random graphs. J. Stat. Phys. 141 638–660.
  • [15] Ellis, R. S. and Newman, C. M. (1978). The statistics of Curie–Weiss models. J. Stat. Phys. 19 149–161.
  • [16] Georgii, H.-O. (1988). Gibbs Measures and Phase Transitions. De Gruyter Studies in Mathematics 9. de Gruyter, Berlin.
  • [17] Georgii, H.-O. and Higuchi, Y. (2000). Percolation and number of phases in the two-dimensional Ising model. J. Math. Phys. 41 1153–1169.
  • [18] Greschenfield, A. and Montanari, A. (2007). Reconstruction for models on random graphs. In 48th FOCS Symposium, Providence, RI.
  • [19] Griffiths, R. B., Hurst, C. A. and Sherman, S. (1970). Concavity of magnetization of an Ising ferromagnet in a positive external field. J. Math. Phys. 11 790–795.
  • [20] Grimmett, G. (2006). The Random-Cluster Model. Grundlehren der Mathematischen Wissenschaften 333. Springer, Berlin.
  • [21] Krengel, U. (1985). Ergodic Theorems. De Gruyter Studies in Mathematics 6. de Gruyter, Berlin.
  • [22] Külske, C. (1997). Metastates in disordered mean-field models: Random field and Hopfield models. J. Stat. Phys. 88 1257–1293.
  • [23] Kurtz, T., Lyons, R., Pemantle, R. and Peres, Y. (1997). A conceptual proof of the Kesten–Stigum theorem for multi-type branching processes. In Classical and Modern Branching Processes (Minneapolis, MN, 1994). IMA Vol. Math. Appl. 84 181–185. Springer, New York.
  • [24] Liggett, T. M. (2005). Interacting Particle Systems. Springer, Berlin.
  • [25] Lyons, R. (1989). The Ising model and percolation on trees and tree-like graphs. Comm. Math. Phys. 125 337–353.
  • [26] Lyons, R. (1990). Random walks and percolation on trees. Ann. Probab. 18 931–958.
  • [27] Mézard, M. and Montanari, A. (2009). Information, Physics, and Computation. Oxford Univ. Press, Oxford.
  • [28] Montanari, A., Mossel, E. and Sly, A. (2012). The weak limit of Ising models on locally tree-like graphs. Probab. Theory Related Fields 152 31–51.
  • [29] Newman, C. M. and Stein, D. L. (1996). Spatial inhomogeneity and thermodynamic chaos. Phys. Rev. Lett. 76 4821–4824.
  • [30] Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Rev. 45 167–256 (electronic).
  • [31] Niss, M. (2005). History of the Lenz–Ising model 1920–1950: From ferromagnetic to cooperative phenomena. Arch. Hist. Exact Sci. 59 267–318.
  • [32] Pemantle, R. and Peres, Y. (2010). The critical Ising model on trees, concave recursions and nonlinear capacity. Ann. Probab. 38 184–206.
  • [33] Stroock, D. W. (2011). Probability Theory: An Analytic View, 2nd ed. Cambridge Univ. Press, Cambridge.