Annals of Probability

A central limit theorem for the Euler characteristic of a Gaussian excursion set

Anne Estrade and José R. León

Full-text: Open access


We study the Euler characteristic of an excursion set of a stationary isotropic Gaussian random field $X:\Omega\times\mathbb{R}^{d}\to\mathbb{R}$. Let us fix a level $u\in\mathbb{R}$ and let us consider the excursion set above $u$, $A(T,u)=\{t\in T:X(t)\ge u\}$ where $T$ is a bounded cube $\subset\mathbb{R}^{d}$. The aim of this paper is to establish a central limit theorem for the Euler characteristic of $A(T,u)$ as $T$ grows to $\mathbb{R}^{d}$, as conjectured by R. Adler more than ten years ago [Ann. Appl. Probab. 10 (2000) 1–74].

The required assumption on $X$ is $C^{3}$ regularity of the trajectories, non degeneracy of the Gaussian vector $X(t)$ and derivatives at any fixed point $t\in\mathbb{R}^{d}$ as well as integrability on $\mathbb{R}^{d}$ of the covariance function and its derivatives. The fact that $X$ is $C^{3}$ is stronger than Geman’s assumption traditionally used in dimension one. Nevertheless, our result extends what is known in dimension one to higher dimension. In that case, the Euler characteristic of $A(T,u)$ equals the number of up-crossings of $X$ at level $u$, plus eventually one if $X$ is above $u$ at the left bound of the interval $T$.

Article information

Ann. Probab., Volume 44, Number 6 (2016), 3849-3878.

Received: June 2014
Revised: April 2015
First available in Project Euclid: 14 November 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60F05: Central limit and other weak theorems
Secondary: 60G15: Gaussian processes 60G60: Random fields 53C65: Integral geometry [See also 52A22, 60D05]; differential forms, currents, etc. [See mainly 58Axx]

Gaussian fields central limit theorem Gaussian excursion set Euler characteristic


Estrade, Anne; León, José R. A central limit theorem for the Euler characteristic of a Gaussian excursion set. Ann. Probab. 44 (2016), no. 6, 3849--3878. doi:10.1214/15-AOP1062.

Export citation


  • [1] Adler, R. J. (1977). A spectral moment estimation problem in two dimensions. Biometrika 64 367–373.
  • [2] Adler, R. J. (1981). The Geometry of Random Fields. Wiley, Chichester.
  • [3] Adler, R. J. (2000). On excursion sets, tube formulas and maxima of random fields. Ann. Appl. Probab. 10 1–74.
  • [4] Adler, R. J. and Hasofer, A. M. (1976). Level crossings for random fields. Ann. Probab. 4 1–12.
  • [5] Adler, R. J. and Taylor, J. E. (2007). Random Fields and Geometry. Springer, New York.
  • [6] Adler, R. J., Taylor, J. E. and Worsley, K. J. (2007). Applications of random fields and geometry: Foundations and case studies. Preprint. Available on R. Adler’s home page
  • [7] Ahmad, O. S. and Pinoli, J.-C. (2013). Lipschitz–Killing curvatures of the excursion sets of skew Student’s $t$ random fields. Stoch. Models 29 273–289.
  • [8] Arcones, M. A. (1994). Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. Ann. Probab. 22 2242–2274.
  • [9] Auffinger, A. and Ben Arous, G. (2013). Complexity of random smooth functions on the high-dimensional sphere. Ann. Probab. 41 4214–4247.
  • [10] Azaïs, J.-M. and Delmas, C. (2002). Asymptotic expansions for the distribution of the maximum of Gaussian random fields. Extremes 5 181–212.
  • [11] Azaïs, J.-M. and Wschebor, M. (2005). On the distribution of the maximum of a Gaussian field with $d$ parameters. Ann. Appl. Probab. 15 254–278.
  • [12] Azaïs, J.-M. and Wschebor, M. (2009). Level Sets and Extrema of Random Processes and Fields. Wiley, Hoboken, NJ.
  • [13] Bulinski, A., Spodarev, E. and Timmermann, F. (2012). Central limit theorems for the excursion set volumes of weakly dependent random fields. Bernoulli 18 100–118.
  • [14] Cabaña, E. M. (1987). Affine processes: A test of isotropy based on level sets. SIAM J. Appl. Math. 47 886–891.
  • [15] Cheng, D. and Xiao, Y. (2016). The mean Euler characteristic and excursion probability of Gaussian random fields with stationary increments. Ann. Appl. Probab. 26 722–759.
  • [16] Elizarov, A. I. (1984). On the variance of the number of stationary points of a homogeneous Gaussian field. Theory Probab. Appl. 29 569–570.
  • [17] Estrade, A., Fariñas, A. and León, J. R. (2015). Computation in dimension 2. Working paper. Available at
  • [18] Iribarren, I. (1989). Asymptotic behaviour of the integral of a function on the level set of a mixing random field. Probab. Math. Statist. 10 45–56.
  • [19] Kratz, M. F. and León, J. R. (2001). Central limit theorems for level functionals of stationary Gaussian processes and fields. J. Theoret. Probab. 14 639–672.
  • [20] Kratz, M. F. and León, J. R. (2006). On the second moment of the number of crossings by a stationary Gaussian process. Ann. Probab. 34 1601–1607.
  • [21] Major, P. (2014). Multiple Wiener–Itô Integrals: With Applications to Limit Theorems, 2nd ed. Lecture Notes in Math. 849. Springer, Cham.
  • [22] Malevich, T. L. and Volodina, L. N. (1989). Conditions for the finiteness of the moments of the number of zeros of a Gaussian vector field. Theory Probab. Appl. 33 50–61.
  • [23] Meschenmoser, D. and Shashkin, A. (2011). Functional central limit theorem for the volume of excursion sets generated by associated random fields. Statist. Probab. Lett. 81 642–646.
  • [24] Naitzat, G. and Adler, R. J. (2015). A central limit theorem for the Euler integral of a Gaussian random field. Preprint. Available at arXiv:1506.08772.
  • [25] Nourdin, I., Peccati, G. and Podolskij, M. (2011). Quantitative Breuer–Major theorems. Stochastic Process. Appl. 121 793–812.
  • [26] Nualart, D. (2006). The Malliavin Calculus and Related Topics, 2nd ed. Springer, Berlin.
  • [27] Nualart, D. and Peccati, G. (2005). Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 177–193.
  • [28] Peccati, G. and Tudor, C. A. (2005). Gaussian limits for vector-valued multiple stochastic integrals. In Séminaire de Probabilités XXXVIII. Lecture Notes in Math. 1857 247–262. Springer, Berlin.
  • [29] Slud, E. V. (1994). MWI representation of the number of curve-crossings by a differentiable Gaussian process, with applications. Ann. Probab. 22 1355–1380.
  • [30] Spodarev, E. and Zaporozhets, D. (2013). Asymptotics of the mean Minkowski functionals of Gaussian excursions. Preprint. Available at
  • [31] Taheriyoun, A. R. (2012). Testing the covariance function of stationary Gaussian random fields. Statist. Probab. Lett. 82 606–613.
  • [32] Taheriyoun, A. R., Shafie, K. and Jozani, M. J. (2009). A note on the higher moments of the Euler characteristic of the excursion sets of random fields. Statist. Probab. Lett. 79 1074–1082.
  • [33] Taylor, J. E. and Worsley, K. J. (2008). Random fields of multivariate test statistics, with applications to shape analysis. Ann. Statist. 36 1–27.