Annals of Probability

Mean field games with common noise

René Carmona, François Delarue, and Daniel Lacker

Full-text: Open access

Abstract

A theory of existence and uniqueness is developed for general stochastic differential mean field games with common noise. The concepts of strong and weak solutions are introduced in analogy with the theory of stochastic differential equations, and existence of weak solutions for mean field games is shown to hold under very general assumptions. Examples and counter-examples are provided to enlighten the underpinnings of the existence theory. Finally, an analog of the famous result of Yamada and Watanabe is derived, and it is used to prove existence and uniqueness of a strong solution under additional assumptions.

Article information

Source
Ann. Probab., Volume 44, Number 6 (2016), 3740-3803.

Dates
Received: July 2014
Revised: July 2015
First available in Project Euclid: 14 November 2016

Permanent link to this document
https://projecteuclid.org/euclid.aop/1479114262

Digital Object Identifier
doi:10.1214/15-AOP1060

Mathematical Reviews number (MathSciNet)
MR3572323

Zentralblatt MATH identifier
06674837

Subjects
Primary: 93E20: Optimal stochastic control
Secondary: 60H10: Stochastic ordinary differential equations [See also 34F05] 91A13: Games with infinitely many players

Keywords
Mean field games stochastic optimal control McKean–Vlasov equations weak solutions relaxed controls

Citation

Carmona, René; Delarue, François; Lacker, Daniel. Mean field games with common noise. Ann. Probab. 44 (2016), no. 6, 3740--3803. doi:10.1214/15-AOP1060. https://projecteuclid.org/euclid.aop/1479114262


Export citation

References

  • [1] Ahuja, S. (2014). Wellposedness of mean field games with common noise under a weak monotonicity condition. Preprint. Available at arXiv:1406.7028.
  • [2] Aliprantis, C. and Border, K. (2007). Infinite Dimensional Analysis: A Hitchhiker’s Guide, 3rd ed. Springer, Berlin.
  • [3] Barlow, M. T. (1982). One-dimensional stochastic differential equations with no strong solution. J. Lond. Math. Soc. (2) 26 335–347.
  • [4] Bensoussan, A., Frehse, J. and Yam, P. (2013). Mean Field Games and Mean Field Type Control Theory. Springer, New York.
  • [5] Bensoussan, A., Frehse, J. and Yam, P. (2014). The master equation in mean field theory. Preprint. Available at arXiv:1404.4150.
  • [6] Bogachev, V. I. (2007). Measure Theory. Vol. I, II. Springer, Berlin.
  • [7] Brémaud, P. and Yor, M. (1978). Changes of filtrations and of probability measures. Z. Wahrsch. Verw. Gebiete 45 269–295.
  • [8] Cardaliaguet, P. (2012). Notes on mean field games.
  • [9] Cardaliaguet, P., Graber, P. J., Porretta, A. and Tonon, D. (2015). Second order mean field games with degenerate diffusion and local coupling. NoDEA Nonlinear Differential Equations Appl. 22 1287–1317.
  • [10] Carmona, R. and Delarue, F. (2013). Probabilistic analysis of mean-field games. SIAM J. Control Optim. 51 2705–2734.
  • [11] Carmona, R. and Delarue, F. (2014). The master equation for large population equilibriums. In Stochastic Analysis and Applications 2014. Springer Proc. Math. Stat. 100 77–128. Springer, Cham.
  • [12] Carmona, R., Delarue, F. and Lachapelle, A. (2013). Control of McKean–Vlasov dynamics versus mean field games. Math. Financ. Econ. 7 131–166.
  • [13] Carmona, R., Fouque, J.-P. and Sun, L.-H. (2015). Mean field games and systemic risk. Commun. Math. Sci. 13 911–933.
  • [14] Carmona, R. and Lacker, D. (2015). A probabilistic weak formulation of mean field games and applications. Ann. Appl. Probab. 25 1189–1231.
  • [15] Carmona, R. and Zhu, X. (2016). A probabilistic approach to mean field games with major and minor players. Ann. Appl. Probab. 26 1535–1580.
  • [16] Castaing, C., Raynaud de Fitte, P. and Valadier, M. (2004). Young Measures on Topological Spaces. Mathematics and Its Applications 571. Kluwer Academic, Dordrecht.
  • [17] Dufour, F. and Stockbridge, R. H. (2012). On the existence of strict optimal controls for constrained, controlled Markov processes in continuous time. Stochastics 84 55–78.
  • [18] Dugundji, J. (1951). An extension of Tietze’s theorem. Pacific J. Math. 1 353–367.
  • [19] El Karoui, N., Nguyen, D. H. and Jeanblanc-Picqué, M. (1987). Compactification methods in the control of degenerate diffusions: Existence of an optimal control. Stochastics 20 169–219.
  • [20] Ethier, S. N. and Kurtz, T. G. (2005). Markov Processes: Characterization and Convergence, 2nd ed. Wiley, New York.
  • [21] Filippov, A. F. (1962). On certain questions in the theory of optimal control. J. SIAM Control Ser. A 1 76–84.
  • [22] Gomes, D. A., Mohr, J. and Souza, R. R. (2010). Discrete time, finite state space mean field games. J. Math. Pures Appl. (9) 93 308–328.
  • [23] Gomes, D. A., Mohr, J. and Souza, R. R. (2013). Continuous time finite state mean field games. Appl. Math. Optim. 68 99–143.
  • [24] Gomes, D. A., Patrizi, S. and Voskanyan, V. (2014). On the existence of classical solutions for stationary extended mean field games. Nonlinear Anal. 99 49–79.
  • [25] Gomes, D. A., Pimentel, E. A. and Sánchez-Morgado, H. (2015). Time-dependent mean-field games in the subquadratic case. Comm. Partial Differential Equations 40 40–76.
  • [26] Gomes, D. A. and Saúde, J. (2014). Mean field games models—A brief survey. Dyn. Games Appl. 4 110–154.
  • [27] Guéant, O., Lasry, J.-M. and Lions, P.-L. (2011). Mean field games and applications. In Paris-Princeton Lectures on Mathematical Finance 2010. Lecture Notes in Math. 2003 205–266. Springer, Berlin.
  • [28] Haussmann, U. G. and Lepeltier, J.-P. (1990). On the existence of optimal controls. SIAM J. Control Optim. 28 851–902.
  • [29] Huang, M. (2010). Large-population LQG games involving a major player: The Nash certainty equivalence principle. SIAM J. Control Optim. 48 3318–3353.
  • [30] Huang, M., Malhamé, R. P. and Caines, P. E. (2006). Large population stochastic dynamic games: Closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 221–251.
  • [31] Jacod, J. and Mémin, J. (1981). Sur un type de convergence intermédiaire entre la convergence en loi et la convergence en probabilité. In Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French). Lecture Notes in Math. 850 529–546. Springer, Berlin.
  • [32] Jacod, J. and Mémin, J. (1981). Weak and strong solutions of stochastic differential equations: Existence and stability. In Stochastic Integrals (Proc. Sympos., Univ. Durham, Durham, 1980). Lecture Notes in Math. 851 169–212. Springer, Berlin.
  • [33] Kallenberg, O. (2002). Foundations of Modern Probability, 2nd ed. Springer, New York.
  • [34] Kurtz, T. G. (1998). Martingale problems for conditional distributions of Markov processes. Electron. J. Probab. 3 29 pp. (electronic).
  • [35] Kurtz, T. G. (2014). Weak and strong solutions of general stochastic models. Electron. Commun. Probab. 19 16.
  • [36] Kurtz, T. G. and Protter, P. (1991). Weak limit theorems for stochastic integrals and stochastic differential equations. Ann. Probab. 19 1035–1070.
  • [37] Lacker, D. (2014). A general characterization of the mean field limit for stochastic differential games. Preprint. Available at arXiv:1408.2708.
  • [38] Lacker, D. (2015). Mean field games via controlled martingale problems: Existence of Markovian equilibria. Stochastic Process. Appl. 125 2856–2894.
  • [39] Lasry, J.-M. and Lions, P.-L. (2007). Mean field games. Jpn. J. Math. 2 229–260.
  • [40] Lasry, J.-M. and Lions, P.-L. and Guéant, O. (2008). Application of mean field games to growth theory. Preprint.
  • [41] Lions, P. L. (2007). Théorie des jeux à champs moyen et applications. Cours au College de France.
  • [42] Nourian, M. and Caines, P. E. (2013). $\varepsilon$-Nash mean field game theory for nonlinear stochastic dynamical systems with major and minor agents. SIAM J. Control Optim. 51 3302–3331.
  • [43] Stroock, D. W. and Varadhan, S. R. S. (1979). Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften 233. Springer, Berlin.
  • [44] Villani, C. (2003). Topics in Optimal Transportation. Graduate Studies in Mathematics 58. Amer. Math. Soc., Providence, RI.
  • [45] Yamada, T. and Watanabe, S. (1971). On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11 155–167.