The Annals of Probability

Duality between coalescence times and exit points in last-passage percolation models

Leandro P. R. Pimentel

Full-text: Open access

Abstract

In this article, we prove a duality relation between coalescence times and exit points in last-passage percolation models with exponential weights. As a consequence, we get lower bounds for coalescence times, with scaling exponent $3/2$, and we relate its distribution with variational problems involving the Brownian motion process and the Airy$_{2}$ process. The proof relies on the relation between Busemann functions and the Burke property for stationary versions of the last-passage percolation model with boundary.

Article information

Source
Ann. Probab., Volume 44, Number 5 (2016), 3187-3206.

Dates
Received: November 2013
Revised: May 2015
First available in Project Euclid: 21 September 2016

Permanent link to this document
https://projecteuclid.org/euclid.aop/1474462095

Digital Object Identifier
doi:10.1214/15-AOP1044

Mathematical Reviews number (MathSciNet)
MR3551194

Zentralblatt MATH identifier
1361.60095

Subjects
Primary: 60C05: Combinatorial probability 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 60F05: Central limit and other weak theorems

Keywords
Last passage percolation directional geodesics coalescence scaling limit

Citation

Pimentel, Leandro P. R. Duality between coalescence times and exit points in last-passage percolation models. Ann. Probab. 44 (2016), no. 5, 3187--3206. doi:10.1214/15-AOP1044. https://projecteuclid.org/euclid.aop/1474462095


Export citation

References

  • [1] Aldous, D. and Diaconis, P. (1995). Hammersley’s interacting particle process and longest increasing subsequences. Probab. Theory Related Fields 103 199–213.
  • [2] Baik, J., Ferrari, P. L. and Péché, S. (2010). Limit process of stationary TASEP near the characteristic line. Comm. Pure Appl. Math. 63 1017–1070.
  • [3] Balázs, M., Cator, E. and Seppäläinen, T. (2006). Cube root fluctuations for the corner growth model associated to the exclusion process. Electron. J. Probab. 11 1094–1132 (electronic).
  • [4] Cator, E. and Groeneboom, P. (2006). Second class particles and cube root asymptotics for Hammersley’s process. Ann. Probab. 34 1273–1295.
  • [5] Cator, E. and Pimentel, L. P. R. (2012). Busemann functions and equilibrium measures in last passage percolation models. Probab. Theory Related Fields 154 89–125.
  • [6] Cator, E. and Pimentel, L. P. R. (2015). On the local fluctuations of last-passage percolation models. Stochastic Process. Appl. 125 538–551.
  • [7] Corwin, I., Ferrari, P. L. and Péché, S. (2010). Limit processes for TASEP with shocks and rarefaction fans. J. Stat. Phys. 140 232–267.
  • [8] Corwin, I., Quatel, J. and Remenik, D. (2011). Renormalization fixed point of the KPZ universality class. Available at arXiv:1103.3422.
  • [9] Coupier, D. (2011). Multiple geodesics with the same direction. Electron. Commun. Probab. 16 517–527.
  • [10] Ferrari, P. A., Martin, J. B. and Pimentel, L. P. R. (2009). A phase transition for competition interfaces. Ann. Appl. Probab. 19 281–317.
  • [11] Ferrari, P. A. and Pimentel, L. P. R. (2005). Competition interfaces and second class particles. Ann. Probab. 33 1235–1254.
  • [12] Groeneboom, P. (1989). Brownian motion with a parabolic drift and Airy functions. Probab. Theory Related Fields 81 79–109.
  • [13] Howard, C. D. and Newman, C. M. (2001). Geodesics and spanning trees for Euclidean first-passage percolation. Ann. Probab. 29 577–623.
  • [14] Johansson, K. (2000). Shape fluctuations and random matrices. Comm. Math. Phys. 209 437–476.
  • [15] Johansson, K. (2003). Discrete polynuclear growth and determinantal processes. Comm. Math. Phys. 242 277–329.
  • [16] Kardar, M. and Zhang, Y. C. (1987). Scaling of directed polymers in random media. Phys. Rev. Lett. 58 2087–2090.
  • [17] Moreno Flores, G., Quastel, J. and Remenik, D. (2013). Endpoint distribution of directed polymers in $1+1$ dimensions. Comm. Math. Phys. 317 363–380.
  • [18] Newman, C. M. (1995). A surface view of first-passage percolation. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) 1017–1023. Birkhäuser, Basel.
  • [19] Pimentel, L. P. R. (2014). On the location of the maximum of a continuous stochastic process. J. Appl. Probab. 51 152–161.
  • [20] Quastel, J. and Remenik, D. (2014). Airy processes and variational problems. In Topics in Percolative and Disordered Systems. Springer Proc. Math. Stat. 69 121–171. Springer, New York.
  • [21] Rost, H. (1981). Nonequilibrium behaviour of a many particle process: Density profile and local equilibria. Z. Wahrsch. Verw. Gebiete 58 41–53.
  • [22] Wüthrich, M. V. (2002). Asymptotic behaviour of semi-infinite geodesics for maximal increasing subsequences in the plane. In In and Out of Equilibrium (Mambucaba, 2000). Progress in Probability 51 205–226. Birkhäuser, Boston, MA.