The Annals of Probability

Functional Poisson approximation in Kantorovich–Rubinstein distance with applications to U-statistics and stochastic geometry

Laurent Decreusefond, Matthias Schulte, and Christoph Thäle

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

A Poisson or a binomial process on an abstract state space and a symmetric function $f$ acting on $k$-tuples of its points are considered. They induce a point process on the target space of $f$. The main result is a functional limit theorem which provides an upper bound for an optimal transportation distance between the image process and a Poisson process on the target space. The technical background are a version of Stein’s method for Poisson process approximation, a Glauber dynamics representation for the Poisson process and the Malliavin formalism. As applications of the main result, error bounds for approximations of U-statistics by Poisson, compound Poisson and stable random variables are derived, and examples from stochastic geometry are investigated.

Article information

Source
Ann. Probab. Volume 44, Number 3 (2016), 2147-2197.

Dates
Received: June 2014
Revised: March 2015
First available in Project Euclid: 16 May 2016

Permanent link to this document
https://projecteuclid.org/euclid.aop/1463410041

Digital Object Identifier
doi:10.1214/15-AOP1020

Mathematical Reviews number (MathSciNet)
MR3502603

Zentralblatt MATH identifier
1347.60027

Subjects
Primary: 60F17: Functional limit theorems; invariance principles 60G55: Point processes
Secondary: 60D05: Geometric probability and stochastic geometry [See also 52A22, 53C65] 60E07: Infinitely divisible distributions; stable distributions 60H07: Stochastic calculus of variations and the Malliavin calculus

Keywords
Binomial process configuration space functional limit theorem Glauber dynamics Kantorovich–Rubinstein distance Malliavin formalism Poisson process Stein’s method stochastic geometry U-statistics

Citation

Decreusefond, Laurent; Schulte, Matthias; Thäle, Christoph. Functional Poisson approximation in Kantorovich–Rubinstein distance with applications to U-statistics and stochastic geometry. Ann. Probab. 44 (2016), no. 3, 2147--2197. doi:10.1214/15-AOP1020. https://projecteuclid.org/euclid.aop/1463410041.


Export citation

References

  • [1] Arratia, R., Goldstein, L. and Gordon, L. (1989). Two moments suffice for Poisson approximations: The Chen–Stein method. Ann. Probab. 17 9–25.
  • [2] Barbour, A. D. (1988). Stein’s method and Poisson process convergence: A celebration of applied probability. J. Appl. Probab. 25A 175–184.
  • [3] Barbour, A. D. (1990). Stein’s method for diffusion approximations. Probab. Theory Related Fields 84 297–322.
  • [4] Barbour, A. D. and Brown, T. C. (1992). Stein’s method and point process approximation. Stochastic Process. Appl. 43 9–31.
  • [5] Barbour, A. D., Chen, L. H. Y. and Loh, W.-L. (1992). Compound Poisson approximation for nonnegative random variables via Stein’s method. Ann. Probab. 20 1843–1866.
  • [6] Barbour, A. D. and Chryssaphinou, O. (2001). Compound Poisson approximation: A user’s guide. Ann. Appl. Probab. 11 964–1002.
  • [7] Barbour, A. D. and Eagleson, G. K. (1984). Poisson convergence for dissociated statistics. J. Roy. Statist. Soc. Ser. B 46 397–402.
  • [8] Barbour, A. D., Holst, L. and Janson, S. (1992). Poisson Approximation. Oxford Univ. Press, New York.
  • [9] Barbour, A. D. and Utev, S. (1998). Solving the Stein equation in compound Poisson approximation. Adv. in Appl. Probab. 30 449–475.
  • [10] Barbour, A. D. and Xia, A. (2006). On Stein’s factors for Poisson approximation in Wasserstein distance. Bernoulli 12 943–954.
  • [11] Brown, T. C., Weinberg, G. V. and Xia, A. (2000). Removing logarithms from Poisson process error bounds. Stochastic Process. Appl. 87 149–165.
  • [12] Brown, T. C. and Xia, A. (1995). On metrics in point process approximation. Stochastics Stochastics Rep. 52 247–263.
  • [13] Brown, T. C. and Xia, A. (2001). Stein’s method and birth–death processes. Ann. Probab. 29 1373–1403.
  • [14] Chen, L. H. Y. (1975). Poisson approximation for dependent trials. Ann. Probab. 3 534–545.
  • [15] Chen, L. H. Y. and Xia, A. (2004). Stein’s method, Palm theory and Poisson process approximation. Ann. Probab. 32 2545–2569.
  • [16] Coutin, L. and Decreusefond, L. (2013). Stein’s method for Brownian approximations. Commun. Stoch. Anal. 7 349–372.
  • [17] Dabrowski, A. R., Dehling, H. G., Mikosch, T. and Sharipov, O. (2002). Poisson limits for $U$-statistics. Stochastic Process. Appl. 99 137–157.
  • [18] Daley, D. J. and Vere-Jones, D. (2008). An Introduction to the Theory of Point Processes. Vol. II: General Theory and Structure, 2nd ed. Springer, New York.
  • [19] Decreusefond, L. (2008). Wasserstein distance on configuration space. Potential Anal. 28 283–300.
  • [20] Decreusefond, L., Joulin, A. and Savy, N. (2010). Upper bounds on Rubinstein distances on configuration spaces and applications. Commun. Stoch. Anal. 4 377–399.
  • [21] Eichelsbacher, P. and Roos, M. (1999). Compound Poisson approximation for dissociated random variables via Stein’s method. Combin. Probab. Comput. 8 335–346.
  • [22] Heinrich, L. and Wolf, W. (1993). On the convergence of $U$-statistics with stable limit distribution. J. Multivariate Anal. 44 266–278.
  • [23] Hug, D., Schneider, R. and Schuster, R. (2008). Integral geometry of tensor valuations. Adv. in Appl. Math. 41 482–509.
  • [24] Kallenberg, O. (2002). Foundations of Modern Probability, 2nd ed. Springer, New York.
  • [25] Kingman, J. F. C. (1993). Poisson Processes. Oxford Univ. Press, New York.
  • [26] Lachièze-Rey, R. and Peccati, G. (2013). Fine Gaussian fluctuations on the Poisson space, I: Contractions, cumulants and geometric random graphs. Electron. J. Probab. 18 1–35.
  • [27] Lao, W. and Mayer, M. (2008). $U$-max-statistics. J. Multivariate Anal. 99 2039–2052.
  • [28] Last, G., Peccati, G. and Schulte, M. (2014). Normal approximation on Poisson spaces: Mehler’s formula, second order Poincaré inequalities and stabilization. Available at arXiv:1401.7568.
  • [29] Last, G. and Penrose, M. D. (2011). Poisson process Fock space representation, chaos expansion and covariance inequalities. Probab. Theory Related Fields 150 663–690.
  • [30] Malevich, T. L. and Abdalimov, B. (1977). Stable limit distributions for $U$-statistics. Theory Probab. Appl. 22 370–377.
  • [31] Mayer, M. and Molchanov, I. (2007). Limit theorems for the diameter of a random sample in the unit ball. Extremes 10 129–150.
  • [32] Peccati, G. (2011). The Chen–Stein method for Poisson functionals. Available at arXiv:1112.5051.
  • [33] Peccati, G., Solé, J. L., Taqqu, M. S. and Utzet, F. (2010). Stein’s method and normal approximation of Poisson functionals. Ann. Probab. 38 443–478.
  • [34] Penrose, M. (2003). Random Geometric Graphs. Oxford Univ. Press, Oxford.
  • [35] Preston, C. (1975). Spatial birth-and-death processes. In Proceedings of the 40th Session of the International Statistical Institute (Warsaw, 1975), Vol. 2. 371–391.
  • [36] Reinert, G. (2005). Three general approaches to Stein’s method. In An Introduction to Stein’s Method. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 4 183–221. Singapore Univ. Press, Singapore.
  • [37] Reitzner, M., Schulte, M. and Thäle, C. (2013). Limit theory for the Gilbert graph. Available at arXiv:1312.4861.
  • [38] Schneider, R. and Weil, W. (2008). Stochastic and Integral Geometry. Springer, Berlin.
  • [39] Schuhmacher, D. (2005). Upper bounds for spatial point process approximations. Ann. Appl. Probab. 15 615–651.
  • [40] Schuhmacher, D. (2009). Stein’s method and Poisson process approximation for a class of Wasserstein metrics. Bernoulli 15 550–568.
  • [41] Schuhmacher, D. and Stucki, K. (2014). Gibbs point process approximation: Total variation bounds using Stein’s method. Ann. Probab. 42 1911–1951.
  • [42] Schuhmacher, D. and Xia, A. (2008). A new metric between distributions of point processes. Adv. in Appl. Probab. 40 651–672.
  • [43] Schulte, M. and Thäle, C. (2012). The scaling limit of Poisson-driven order statistics with applications in geometric probability. Stochastic Process. Appl. 122 4096–4120.
  • [44] Schulte, M. and Thäle, C. (2014). Distances between Poisson $k$-flats. Methodol. Comput. Appl. Probab. 16 311–329.
  • [45] Shih, H.-H. (2011). On Stein’s method for infinite-dimensional Gaussian approximation in abstract Wiener spaces. J. Funct. Anal. 261 1236–1283.
  • [46] Villani, C. (2009). Optimal Transport: Old and New. Springer, Berlin.
  • [47] Zolotarev, V. M. (1986). One-Dimensional Stable Distributions. Amer. Math. Soc., Providence, RI.