The Annals of Probability

Imaginary geometry II: Reversibility of $\operatorname{SLE}_{\kappa}(\rho_{1};\rho_{2})$ for $\kappa\in(0,4)$

Jason Miller and Scott Sheffield

Full-text: Open access

Abstract

Given a simply connected planar domain $D$, distinct points $x,y\in\partial D$, and $\kappa>0$, the Schramm–Loewner evolution $\operatorname{SLE}_{\kappa}$ is a random continuous non-self-crossing path in $\overline{D}$ from $x$ to $y$. The $\operatorname{SLE}_{\kappa}(\rho_{1};\rho_{2})$ processes, defined for $\rho_{1},\rho_{2}>-2$, are in some sense the most natural generalizations of $\operatorname{SLE}_{\kappa}$.

When $\kappa\leq4$, we prove that the law of the time-reversal of an $\operatorname{SLE}_{\kappa}(\rho_{1};\rho_{2})$ from $x$ to $y$ is, up to parameterization, an $\operatorname{SLE}_{\kappa}(\rho_{2};\rho_{1})$ from $y$ to $x$. This assumes that the “force points” used to define $\operatorname{SLE}_{\kappa}(\rho_{1};\rho_{2})$ are immediately to the left and right of the $\operatorname{SLE}$ seed. A generalization to arbitrary (and arbitrarily many) force points applies whenever the path does not (or is conditioned not to) hit $\partial D\setminus\{x,y\}$.

The proof of time-reversal symmetry makes use of the interpretation of $\operatorname{SLE}_{\kappa}(\rho_{1};\rho_{2})$ as a ray of a random geometry associated to the Gaussian-free field. Within this framework, the time-reversal result allows us to couple two instances of the Gaussian-free field (with different boundary conditions) so that their difference is almost surely constant on either side of the path. In a fairly general sense, adding appropriate constants to the two sides of a ray reverses its orientation.

Article information

Source
Ann. Probab., Volume 44, Number 3 (2016), 1647-1722.

Dates
Received: May 2013
Revised: May 2014
First available in Project Euclid: 16 May 2016

Permanent link to this document
https://projecteuclid.org/euclid.aop/1463410030

Digital Object Identifier
doi:10.1214/14-AOP943

Mathematical Reviews number (MathSciNet)
MR3502592

Zentralblatt MATH identifier
1344.60078

Subjects
Primary: 60J67: Stochastic (Schramm-)Loewner evolution (SLE)

Keywords
Schramm–Loewner evolution Gaussian free field reversibility

Citation

Miller, Jason; Sheffield, Scott. Imaginary geometry II: Reversibility of $\operatorname{SLE}_{\kappa}(\rho_{1};\rho_{2})$ for $\kappa\in(0,4)$. Ann. Probab. 44 (2016), no. 3, 1647--1722. doi:10.1214/14-AOP943. https://projecteuclid.org/euclid.aop/1463410030


Export citation

References

  • [1] Beffara, V. (2008). The dimension of the SLE curves. Ann. Probab. 36 1421–1452.
  • [2] Ben Arous, G. and Deuschel, J.-D. (1996). The construction of the $(d+1)$-dimensional Gaussian droplet. Comm. Math. Phys. 179 467–488.
  • [3] Camia, F. and Newman, C. M. (2006). Two-dimensional critical percolation: The full scaling limit. Comm. Math. Phys. 268 1–38.
  • [4] Chelkak, D. and Smirnov, S. (2012). Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189 515–580.
  • [5] Dubédat, J. (2005). $\mathrm{SLE}(\kappa,\rho)$ martingales and duality. Ann. Probab. 33 223–243.
  • [6] Dubédat, J. (2009). Duality of Schramm–Loewner evolutions. Ann. Sci. Éc. Norm. Supér. (4) 42 697–724.
  • [7] Dubédat, J. (2009). SLE and the free field: Partition functions and couplings. J. Amer. Math. Soc. 22 995–1054.
  • [8] Hagendorf, C., Bernard, D. and Bauer, M. (2010). The Gaussian free field and $\mathrm{SLE}_{4}$ on doubly connected domains. J. Stat. Phys. 140 1–26.
  • [9] Izyurov, K. and Kytölä, K. (2013). Hadamard’s formula and couplings of SLEs with free field. Probab. Theory Related Fields 155 35–69.
  • [10] Kenyon, R. (2001). Dominos and the Gaussian free field. Ann. Probab. 29 1128–1137.
  • [11] Lamperti, J. (1972). Semi-stable Markov processes. I. Z. Wahrsch. Verw. Gebiete 22 205–225.
  • [12] Lawler, G., Schramm, O. and Werner, W. (2003). Conformal restriction: The chordal case. J. Amer. Math. Soc. 16 917–955 (electronic).
  • [13] Lawler, G. F. (2005). Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs 114. Amer. Math. Soc., Providence, RI.
  • [14] Lawler, G. F., Schramm, O. and Werner, W. (2004). Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32 939–995.
  • [15] Makarov, N. and Smirnov, S. (2010). Off-critical lattice models and massive SLEs. In XVIth International Congress on Mathematical Physics 362–371. World Sci. Publ., Hackensack, NJ.
  • [16] Miller, J. (2010). Universality for $\operatorname{SLE}(4)$. Available at arXiv:1010.1356.
  • [17] Miller, J. (2011). Fluctuations for the Ginzburg–Landau $\nabla\phi$ interface model on a bounded domain. Comm. Math. Phys. 308 591–639.
  • [18] Miller, J. and Sheffield, S. (2012). Imaginary geometry I: Interacting SLEs. Probab. Theory Related Fields. To appear. Available at arXiv:1201.1496.
  • [19] Miller, J. and Sheffield, S. (2012). Imaginary geometry III: Reversibility of SLE$_{\kappa}$ for $\kappa \in(4,8)$. Ann. of Math. To appear. Available at arXiv:1201.1498.
  • [20] Miller, J. and Sheffield, S. (2013). Imaginary geometry IV: Interior rays, whole-plane reversibility, and space-filling trees. Available at arXiv:1302.4738.
  • [21] Naddaf, A. and Spencer, T. (1997). On homogenization and scaling limit of some gradient perturbations of a massless free field. Comm. Math. Phys. 183 55–84.
  • [22] Phelps, R. R. (2001). Lectures on Choquet’s Theorem, 2nd ed. Lecture Notes in Math. 1757. Springer, Berlin.
  • [23] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293. Springer, Berlin.
  • [24] Rider, B. and Virág, B. (2007). The noise in the circular law and the Gaussian free field. Int. Math. Res. Not. IMRN 2 Art. ID rnm006, 33.
  • [25] Rohde, S. and Schramm, O. (2005). Basic properties of SLE. Ann. of Math. (2) 161 883–924.
  • [26] Schramm, O. (2000). Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118 221–288.
  • [27] Schramm, O. (2011). Conformally invariant scaling limits: An overview and a collection of problems [MR2334202]. In Selected Works of Oded Schramm. Volume 1, 2. Sel. Works Probab. Stat. 1161–1191. Springer, New York.
  • [28] Schramm, O. and Sheffield, S. (2005). Harmonic explorer and its convergence to $\mathrm{SLE}_{4}$. Ann. Probab. 33 2127–2148.
  • [29] Schramm, O. and Sheffield, S. (2009). Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202 21–137.
  • [30] Schramm, O. and Sheffield, S. (2013). A contour line of the continuum Gaussian free field. Probab. Theory Related Fields 157 47–80.
  • [31] Schramm, O. and Wilson, D. B. (2005). SLE coordinate changes. New York J. Math. 11 659–669 (electronic).
  • [32] Sheffield, S. Local sets of the Gaussian free field: Slides and audio. Available at https://www.fields.utoronto.ca/audio/05-06/percolation_SLE/sheffield1/, https://www.fields.utoronto.ca/audio/05-06/percolation_SLE/sheffield2/, https://www.fields.utoronto.ca/audio/05-06/percolation_SLE/sheffield3/.
  • [33] Sheffield, S. (2010). Conformal weldings of random surfaces: SLE and the quantum gravity zipper. Ann. Probab. To appear. Available at arXiv:1012.4797.
  • [34] Sheffield, S. (2007). Gaussian free fields for mathematicians. Probab. Theory Related Fields 139 521–541.
  • [35] Sheffield, S. (2009). Exploration trees and conformal loop ensembles. Duke Math. J. 147 79–129.
  • [36] Smirnov, S. (2001). Critical percolation in the plane: Conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333 239–244.
  • [37] Smirnov, S. (2010). Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. of Math. (2) 172 1435–1467.
  • [38] Werner, W. (2004). Girsanov’s transformation for $\mathrm{SLE}(\kappa,\rho)$ processes, intersection exponents and hiding exponents. Ann. Fac. Sci. Toulouse Math. (6) 13 121–147.
  • [39] Werner, W. (2004). Random planar curves and Schramm–Loewner evolutions. In Lectures on Probability Theory and Statistics. Lecture Notes in Math. 1840 107–195. Springer, Berlin.
  • [40] Werner, W. (2005). Conformal restriction and related questions. Probab. Surv. 2 145–190.
  • [41] Werner, W. and Wu, H. (2013). From $\mathrm{CLE}(\kappa)$ to $\mathrm{SLE}(\kappa,\rho)$’s. Electron. J. Probab. 18 no. 36, 20.
  • [42] Zhan, D. (2008). Reversibility of chordal SLE. Ann. Probab. 36 1472–1494.
  • [43] Zhan, D. (2010). Reversibility of some chordal $\mathrm{SLE}(\kappa;\rho)$ traces. J. Stat. Phys. 139 1013–1032.
  • [44] Zhan, D. (2015). Reversibility of whole-plane SLE. Probab. Theory Related Fields 161 561–618.