The Annals of Probability

The measurable Kesten theorem

Miklós Abért, Yair Glasner, and Bálint Virág

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We give an explicit bound on the spectral radius in terms of the densities of short cycles in finite $d$-regular graphs. It follows that the a finite $d$-regular Ramanujan graph $G$ contains a negligible number of cycles of size less than $c\log\log\vert G\vert$.

We prove that infinite $d$-regular Ramanujan unimodular random graphs are trees. Through Benjamini–Schramm convergence this leads to the following rigidity result. If most eigenvalues of a $d$-regular finite graph $G$ fall in the Alon–Boppana region, then the eigenvalue distribution of $G$ is close to the spectral measure of the $d$-regular tree. In particular, $G$ contains few short cycles.

In contrast, we show that $d$-regular unimodular random graphs with maximal growth are not necessarily trees.

Article information

Source
Ann. Probab. Volume 44, Number 3 (2016), 1601-1646.

Dates
Received: February 2012
Revised: May 2014
First available in Project Euclid: 16 May 2016

Permanent link to this document
https://projecteuclid.org/euclid.aop/1463410029

Digital Object Identifier
doi:10.1214/14-AOP937

Mathematical Reviews number (MathSciNet)
MR3502591

Zentralblatt MATH identifier
1339.05365

Subjects
Primary: 05C81: Random walks on graphs 60G50: Sums of independent random variables; random walks
Secondary: 82C41: Dynamics of random walks, random surfaces, lattice animals, etc. [See also 60G50]

Keywords
Girth spectral radius Ramanujan graphs mass transport principal unimodular random graphs

Citation

Abért, Miklós; Glasner, Yair; Virág, Bálint. The measurable Kesten theorem. Ann. Probab. 44 (2016), no. 3, 1601--1646. doi:10.1214/14-AOP937. https://projecteuclid.org/euclid.aop/1463410029


Export citation

References

  • [1] Abért, M., Glasner, Y. and Virág, B. (2014). Kesten’s theorem for invariant random subgroups. Duke Math. J. 163 465–488.
  • [2] Aldous, D. and Lyons, R. (2007). Processes on unimodular random networks. Electron. J. Probab. 12 1454–1508.
  • [3] Aldous, D. and Steele, J. M. (2004). The objective method: Probabilistic combinatorial optimization and local weak convergence. In Probability on Discrete Structures. Encyclopaedia Math. Sci. 110 1–72. Springer, Berlin.
  • [4] Antal, P. and Pisztora, A. (1996). On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24 1036–1048.
  • [5] Bartholdi, L. (1999). Counting paths in graphs. Enseign. Math. (2) 45 83–131.
  • [6] Benjamini, I. and Schramm, O. (2001). Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6 13 pp. (electronic).
  • [7] Bougerol, P. and Jeulin, T. (1999). Brownian bridge on hyperbolic spaces and on homogeneous trees. Probab. Theory Related Fields 115 95–120.
  • [8] Boyd, A. V. (1992). Bounds for the Catalan numbers. Fibonacci Quart. 30 136–138.
  • [9] Friedman, J. (2003). A proof of Alon’s second eigenvalue conjecture. In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing 720–724 (electronic). ACM, New York.
  • [10] Glasner, Y. (2003). Ramanujan graphs with small girth. Combinatorica 23 487–502.
  • [11] Grigorchuk, R., Kaimanovich, V. A. and Nagnibeda, T. (2012). Ergodic properties of boundary actions and the Nielsen–Schreier theory. Adv. Math. 230 1340–1380.
  • [12] Kesten, H. (1959). Symmetric random walks on groups. Trans. Amer. Math. Soc. 92 336–354.
  • [13] Levin, D. A., Peres, Y. and Wilmer, E. L. (2009). Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI.
  • [14] Lubotzky, A. (1994). Discrete Groups, Expanding Graphs and Invariant Measures. Progress in Mathematics 125. Birkhäuser, Basel.
  • [15] Lubotzky, A., Phillips, R. and Sarnak, P. (1988). Ramanujan graphs. Combinatorica 8 261–277.
  • [16] Lyons, R. and Peres, Y. (2015). Cycle density in infinite Ramanujan graphs. Ann. Probab. 43 3337–3358.
  • [17] Margulis, G. A. (1988). Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators. Problemy Peredachi Informatsii 24 51–60.
  • [18] Massey, W. S. (1977). Algebraic Topology: An Introduction. Springer, New York.
  • [19] McKay, B. D. (1981). The expected eigenvalue distribution of a large regular graph. Linear Algebra Appl. 40 203–216.
  • [20] Morgenstern, M. (1994). Existence and explicit constructions of $q+1$ regular Ramanujan graphs for every prime power $q$. J. Combin. Theory Ser. B 62 44–62.
  • [21] Nilli, A. (1991). On the second eigenvalue of a graph. Discrete Math. 91 207–210.
  • [22] Ortner, R. and Woess, W. (2007). Non-backtracking random walks and cogrowth of graphs. Canad. J. Math. 59 828–844.
  • [23] Paschke, W. L. (1993). Lower bound for the norm of a vertex-transitive graph. Math. Z. 213 225–239.
  • [24] Serre, J.-P. (1997). Répartition asymptotique des valeurs propres de l’opérateur de Hecke $T_{p}$. J. Amer. Math. Soc. 10 75–102.
  • [25] Woess, W. (2000). Random Walks on Infinite Graphs and Groups. Cambridge Tracts in Mathematics 138. Cambridge Univ. Press, Cambridge.