The Annals of Probability

Extreme nesting in the conformal loop ensemble

Jason Miller, Samuel S. Watson, and David B. Wilson

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


The conformal loop ensemble $\operatorname{CLE}_{\kappa}$ with parameter $8/3<\kappa<8$ is the canonical conformally invariant measure on countably infinite collections of noncrossing loops in a simply connected domain. Given $\kappa$ and $\nu$, we compute the almost-sure Hausdorff dimension of the set of points $z$ for which the number of CLE loops surrounding the disk of radius $\varepsilon $ centered at $z$ has asymptotic growth $\nu\log(1/\varepsilon )$ as $\varepsilon \to0$. By extending these results to a setting in which the loops are given i.i.d. weights, we give a CLE-based treatment of the extremes of the Gaussian free field.

Article information

Ann. Probab. Volume 44, Number 2 (2016), 1013-1052.

Received: January 2014
Revised: December 2014
First available in Project Euclid: 14 March 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60J67: Stochastic (Schramm-)Loewner evolution (SLE) 60F10: Large deviations
Secondary: 60D05: Geometric probability and stochastic geometry [See also 52A22, 53C65] 37A25: Ergodicity, mixing, rates of mixing

SLE CLE conformal loop ensemble Gaussian free field


Miller, Jason; Watson, Samuel S.; Wilson, David B. Extreme nesting in the conformal loop ensemble. Ann. Probab. 44 (2016), no. 2, 1013--1052. doi:10.1214/14-AOP995.

Export citation


  • [1] Beffara, V. and Duminil-Copin, H. (2012). The self-dual point of the two-dimensional random-cluster model is critical for $q\geq1$. Probab. Theory Related Fields 153 511–542.
  • [2] Bramson, M. and Zeitouni, O. (2012). Tightness of the recentered maximum of the two-dimensional discrete Gaussian free field. Comm. Pure Appl. Math. 65 1–20.
  • [3] Camia, F. and Newman, C. M. (2006). Two-dimensional critical percolation: The full scaling limit. Comm. Math. Phys. 268 1–38.
  • [4] Camia, F. and Newman, C. M. (2007). Critical percolation exploration path and $\mathrm{SLE}_{6}$: A proof of convergence. Probab. Theory Related Fields 139 473–519.
  • [5] Dembo, A., Peres, Y., Rosen, J. and Zeitouni, O. (2001). Thick points for planar Brownian motion and the Erdős–Taylor conjecture on random walk. Acta Math. 186 239–270.
  • [6] Dembo, A. and Zeitouni, O. (2010). Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability 38. Springer, Berlin.
  • [7] Falconer, K. (2003). Fractal Geometry, 2nd ed. Wiley, Hoboken, NJ.
  • [8] Fortuin, C. M. and Kasteleyn, P. W. (1972). On the random-cluster model. I. Introduction and relation to other models. Physica 57 536–564.
  • [9] Frostman, O. (1935). Potentiel d’équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions. Meddel. Lunds Univ. Math. Sem. 3 1–118.
  • [10] Hu, X., Miller, J. and Peres, Y. (2010). Thick points of the Gaussian free field. Ann. Probab. 38 896–926.
  • [11] Kager, W. and Nienhuis, B. (2004). A guide to stochastic Löwner evolution and its applications. J. Stat. Phys. 115 1149–1229.
  • [12] Lawler, G. F. (2005). Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs 114. Amer. Math. Soc., Providence, RI.
  • [13] Miller, J. and Sheffield, S. (2015). CLE(4) and the Gaussian free field. Preprint.
  • [14] Miller, J., Sun, N. and Wilson, D. B. (2014). The Hausdorff dimension of the CLE gasket. Ann. Probab. 42 1644–1665.
  • [15] Nacu, Ş. and Werner, W. (2011). Random soups, carpets and fractal dimensions. J. Lond. Math. Soc. (2) 83 789–809.
  • [16] Pollard, D. (2007). Minimax theorem. Appendix G to A user’s guide to measure theoretic probability. Available at
  • [17] Rohde, S. and Schramm, O. (2005). Basic properties of SLE. Ann. of Math. (2) 161 883–924.
  • [18] Rhodes, R. and Vargas, V. (2014). Gaussian multiplicative chaos and applications: A review. Probab. Surv. 11 315–392.
  • [19] Schramm, O., Sheffield, S. and Wilson, D. B. (2009). Conformal radii for conformal loop ensembles. Comm. Math. Phys. 288 43–53.
  • [20] Sheffield, S. (2009). Exploration trees and conformal loop ensembles. Duke Math. J. 147 79–129.
  • [21] Sheffield, S. and Werner, W. (2012). Conformal loop ensembles: The Markovian characterization and the loop-soup construction. Ann. of Math. (2) 176 1827–1917.
  • [22] Smirnov, S. (2005). Critical percolation and conformal invariance. In XIVth International Congress on Mathematical Physics 99–112. World Sci. Publ., Hackensack, NJ.