The Annals of Probability

Stuck walks: A conjecture of Erschler, Tóth and Werner

Daniel Kious

Full-text: Open access

Abstract

In this paper, we work on a class of self-interacting nearest neighbor random walks, introduced in [Probab. Theory Related Fields 154 (2012) 149–163], for which there is competition between repulsion of neighboring edges and attraction of next-to-neighboring edges. Erschler, Tóth and Werner proved in [Probab. Theory Related Fields 154 (2012) 149–163] that, for any $L\ge1$, if the parameter $\alpha$ belongs to a certain interval $(\alpha_{L+1},\alpha_{L})$, then such random walks localize on $L+2$ sites with positive probability. They also conjectured that this is the almost sure behavior. We prove this conjecture partially, stating that the walk localizes on $L+2$ or $L+3$ sites almost surely, under the same assumptions. We also prove that, if $\alpha\in(1,+\infty)=(\alpha_{2},\alpha_{1})$, then the walk localizes a.s. on $3$ sites.

Article information

Source
Ann. Probab., Volume 44, Number 2 (2016), 883-923.

Dates
Received: September 2013
Revised: November 2014
First available in Project Euclid: 14 March 2016

Permanent link to this document
https://projecteuclid.org/euclid.aop/1457960386

Digital Object Identifier
doi:10.1214/14-AOP991

Mathematical Reviews number (MathSciNet)
MR3474462

Zentralblatt MATH identifier
1344.60096

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 60G20: Generalized stochastic processes 60G42: Martingales with discrete parameter

Keywords
Stuck walks reinforced random walks localization Rubin time-line construction martingale

Citation

Kious, Daniel. Stuck walks: A conjecture of Erschler, Tóth and Werner. Ann. Probab. 44 (2016), no. 2, 883--923. doi:10.1214/14-AOP991. https://projecteuclid.org/euclid.aop/1457960386


Export citation

References

  • [1] Amit, D. J., Parisi, G. and Peliti, L. (1983). Asymptotic behavior of the “true” self-avoiding walk. Phys. Rev. B (3) 27 1635–1645.
  • [2] Basdevant, A.-L., Schapira, B. and Singh, A. (2014). Localization on 4 sites for vertex-reinforced random walks on $\mathbb{Z}$. Ann. Probab. 42 527–558.
  • [3] Basdevant, A.-L., Schapira, B. and Singh, A. (2014). Localization of a vertex reinforced random walk on $\mathbb{Z}$ with sub-linear weight. Probab. Theory Related Fields 159 75–115.
  • [4] Benaim, M., Raimond, O. and Schapira, B. (2013). Strongly vertex-reinforced-random-walk on a complete graph. ALEA Lat. Am. J. Probab. Math. Stat. 10 767–782.
  • [5] Davis, B. (1990). Reinforced random walk. Probab. Theory Related Fields 84 203–229.
  • [6] Dumaz, L. (2012). A clever (self-repelling) burglar. Electron. J. Probab. 17 no. 61, 17.
  • [7] Dumaz, L. and Tóth, B. (2013). Marginal densities of the “true” self-repelling motion. Stochastic Process. Appl. 123 1454–1471.
  • [8] Durrett, R. (2010). Probability: Theory and Examples, 4th ed. Cambridge Univ. Press, Cambridge.
  • [9] Erschler, A., Tóth, B. and Werner, W. (2012). Stuck walks. Probab. Theory Related Fields 154 149–163.
  • [10] Erschler, A., Tóth, B. and Werner, W. (2012). Some locally self-interacting walks on the integers. In Probability in Complex Physical Systems (J.-D. Deuschel, B. Gentz, W. König, M. von Renesse, M. Scheutzow and U. Schmock, eds.). Springer Proceedings in Mathematics 11 313–338. Springer, Berlin.
  • [11] Greene, D. H. and Knuth, D. E. (2008). Mathematics for the Analysis of Algorithms. Modern Birkhäuser Classics. Birkhäuser, Boston, MA. Reprint of the third (1990) edition.
  • [12] Limic, V. and Tarrès, P. (2008). What is the difference between a square and a triangle? In In and Out of Equilibrium. 2. Progress in Probability 60 481–495. Birkhäuser, Basel.
  • [13] Neveu, J. (1975). Discrete-Parameter Martingales, Revised ed. North-Holland, Amsterdam. Translated from the French by T. P. Speed, North-Holland Mathematical Library, Vol. 10.
  • [14] Pemantle, R. (2007). A survey of random processes with reinforcement. Probab. Surv. 4 1–79.
  • [15] Pemantle, R. and Volkov, S. (1999). Vertex-reinforced random walk on $\mathbf{Z}$ has finite range. Ann. Probab. 27 1368–1388.
  • [16] Sellke, T. (2008). Reinforced random walk on the $d$-dimensional integer lattice. Markov Process. Related Fields 14 291–308.
  • [17] Tarrès, P. (2004). Vertex-reinforced random walk on $\mathbb{Z}$ eventually gets stuck on five points. Ann. Probab. 32 2650–2701.
  • [18] Tarrès, P. (2011). Localization of reinforced random walks. Available at ArXiv:1103.5536.
  • [19] Tóth, B. (1995). The “true” self-avoiding walk with bond repulsion on $\mathbf{Z}$: Limit theorems. Ann. Probab. 23 1523–1556.
  • [20] Tóth, B. (2001). Self-interacting random motions. In European Congress of Mathematics, Vol. I (Barcelona, 2000). Progr. Math. 201 555–564. Birkhäuser, Basel.
  • [21] Tóth, B. and Werner, W. (1998). The true self-repelling motion. Probab. Theory Related Fields 111 375–452.