The Annals of Probability

A Curie–Weiss model of self-organized criticality

Raphaël Cerf and Matthias Gorny

Full-text: Open access

Abstract

We try to design a simple model exhibiting self-organized criticality, which is amenable to a rigorous mathematical analysis. To this end, we modify the generalized Ising Curie–Weiss model by implementing an automatic control of the inverse temperature. For a class of symmetric distributions whose density satisfies some integrability conditions, we prove that the sum $S_{n}$ of the random variables behaves as in the typical critical generalized Ising Curie–Weiss model. The fluctuations are of order $n^{3/4}$, and the limiting law is $C\exp(-\lambda x^{4})\,dx$ where $C$ and $\lambda$ are suitable positive constants.

Article information

Source
Ann. Probab., Volume 44, Number 1 (2016), 444-478.

Dates
Received: June 2013
Revised: January 2014
First available in Project Euclid: 2 February 2016

Permanent link to this document
https://projecteuclid.org/euclid.aop/1454423046

Digital Object Identifier
doi:10.1214/14-AOP978

Mathematical Reviews number (MathSciNet)
MR3456343

Zentralblatt MATH identifier
1342.60161

Subjects
Primary: 60F05: Central limit and other weak theorems 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
Ising Curie–Weiss self-organized criticality Laplace’s method

Citation

Cerf, Raphaël; Gorny, Matthias. A Curie–Weiss model of self-organized criticality. Ann. Probab. 44 (2016), no. 1, 444--478. doi:10.1214/14-AOP978. https://projecteuclid.org/euclid.aop/1454423046


Export citation

References

  • [1] Andriani, C. and Baldi, P. (1997). Sharp estimates of deviations of the sample mean in many dimensions. Ann. Inst. Henri Poincaré Probab. Stat. 33 371–385.
  • [2] Aschwanden, M. J., ed. (2013). Self-Organized Criticality Systems. Open Academic Press, Berlin. Available at http://ojs.antek666.website.pl/SOC1.pdf.
  • [3] Bak, P. (1996). How Nature Works: The Science of Self-Organized Criticality. Copernicus, New York.
  • [4] Bak, P., Tang, C. and Wiesenfeld, K. (1988). Self-organized criticality. Phys. Rev. A (3) 38 364–374.
  • [5] Bergh, J. and Löfström, J. (1976). Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften 223. Springer, Berlin.
  • [6] Borovkov, A. A. and Mogul’skiĭ, A. A. (1992). Large deviations and testing statistical hypotheses. I. Large deviations of sums of random vectors. Siberian Adv. Math. 2 52–120.
  • [7] Dembo, A. and Zeitouni, O. (2010). Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability 38. Springer, Berlin.
  • [8] De Boer, J., Derrida, B., Flyvbjerg, H., Jackson, A. D. and Wettig, T. (1994). A simple model of self-organized biological evolution. Phys. Rev. Lett. 73 906–909.
  • [9] Dhar, D. (2006). Theoretical studies of self-organized criticality. Phys. A 369 29–70.
  • [10] Eisele, T. and Ellis, R. S. (1988). Multiple phase transitions in the generalized Curie–Weiss model. J. Stat. Phys. 52 161–202.
  • [11] Ellis, R. S. (2006). Entropy, Large Deviations, and Statistical Mechanics. Springer, Berlin.
  • [12] Ellis, R. S. and Newman, C. M. (1978). Limit theorems for sums of dependent random variables occurring in statistical mechanics. Z. Wahrsch. Verw. Gebiete 44 117–139.
  • [13] Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II, 2nd ed. Wiley, New York.
  • [14] Gorny, M. (2012). Le modèle d’Ising Curie–Weiss et ses généralisations. Masters thesis, Université Paris-Sud.
  • [15] Gorny, M. (2014). A Curie–Weiss model of self-organized criticality: The Gaussian case. Markov Processes Related Fields 20 563–576.
  • [16] Mosco, U. (1971). On the continuity of the Young–Fenchel transform. J. Math. Anal. Appl. 35 518–535.
  • [17] Pruessner, G. (2012). Self-Organised Criticality: Theory, Models and Characterisation. Cambridge Univ. Press, Cambridge.
  • [18] Ráth, B. and Tóth, B. (2009). Erdős–Rényi random graphs $+$ forest fires $=$ self-organized criticality. Electron. J. Probab. 14 1290–1327.
  • [19] Rockafellar, R. T. (1970). Convex Analysis. Princeton Mathematical Series 28. Princeton Univ. Press, Princeton, NJ.
  • [20] Sornette, D. (2006). Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools, 2nd ed. Springer, Berlin.
  • [21] Turcotte, D. L. (1999). Self-organized criticality. Rep. Progr. Phys. 62 1377.