The Annals of Probability

Coalescing Brownian flows: A new approach

Nathanaël Berestycki, Christophe Garban, and Arnab Sen

Full-text: Open access

Abstract

The coalescing Brownian flow on $\mathbb{R}$ is a process which was introduced by Arratia [Coalescing Brownian motions on the line (1979) Univ. Wisconsin, Madison] and Tóth and Werner [Probab. Theory Related Fields 111 (1998) 375–452], and which formally corresponds to starting coalescing Brownian motions from every space–time point. We provide a new state space and topology for this process and obtain an invariance principle for coalescing random walks. This result holds under a finite variance assumption and is thus optimal. In previous works by Fontes et al. [Ann. Probab. 32 (2004) 2857–2883], Newman et al. [Electron. J. Probab. 10 (2005) 21–60], the topology and state-space required a moment of order $3-\varepsilon$ for this convergence to hold. The proof relies crucially on recent work of Schramm and Smirnov on scaling limits of critical percolation in the plane. Our approach is sufficiently simple that we can handle substantially more complicated coalescing flows with little extra work—in particular similar results are obtained in the case of coalescing Brownian motions on the Sierpinski gasket. This is the first such result where the limiting paths do not enjoy the noncrossing property.

Article information

Source
Ann. Probab., Volume 43, Number 6 (2015), 3177-3215.

Dates
Received: November 2013
Revised: July 2014
First available in Project Euclid: 11 December 2015

Permanent link to this document
https://projecteuclid.org/euclid.aop/1449843628

Digital Object Identifier
doi:10.1214/14-AOP957

Mathematical Reviews number (MathSciNet)
MR3433579

Zentralblatt MATH identifier
1345.60111

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82C21: Dynamic continuum models (systems of particles, etc.) 60F17: Functional limit theorems; invariance principles

Keywords
Coalescing Brownian motions coalescing random walks invariance principle for coalescing random walks Arratia flow Brownian web Schramm–Smirnov space of coalescing flows coalescing flow on Sierpinski gasket non-crossing property

Citation

Berestycki, Nathanaël; Garban, Christophe; Sen, Arnab. Coalescing Brownian flows: A new approach. Ann. Probab. 43 (2015), no. 6, 3177--3215. doi:10.1214/14-AOP957. https://projecteuclid.org/euclid.aop/1449843628


Export citation

References

  • [1] Aizenman, M. and Burchard, A. (1999). Hölder regularity and dimension bounds for random curves. Duke Math. J. 99 419–453.
  • [2] Angel, O., Berestycki, N. and Limic, V. (2012). Global divergence of spatial coalescents. Probab. Theory Related Fields 152 625–679.
  • [3] Arratia, R. (1981). Coalescing Brownian motions and the voter model on $\mathbb{Z}$. Unpublished partial manuscript. Available from rarratia@math.usc.edu.
  • [4] Arratia, R. A. (1979). Coalescing Brownian motions on the line. Ph.D. Thesis, Univ. Wisconsin, Madison.
  • [5] Barlow, M. T. (1998). Diffusions on fractals. In Lectures on Probability Theory and Statistics (Saint-Flour, 1995). Lecture Notes in Math. 1690 1–121. Springer, Berlin.
  • [6] Barlow, M. T. and Perkins, E. A. (1988). Brownian motion on the Sierpiński gasket. Probab. Theory Related Fields 79 543–623.
  • [7] Belhaouari, S., Mountford, T., Sun, R. and Valle, G. (2006). Convergence results and sharp estimates for the voter model interfaces. Electron. J. Probab. 11 768–801 (electronic).
  • [8] Berestycki, N., Garban, C. and Sen, A. (2015). A new approach to coalescing Brownian flows II: Black noise property. In preparation.
  • [9] Camia, F. and Newman, C. M. (2006). Two-dimensional critical percolation: The full scaling limit. Comm. Math. Phys. 268 1–38.
  • [10] Coletti, C. F., Fontes, L. R. G. and Dias, E. S. (2009). Scaling limit for a drainage network model. J. Appl. Probab. 46 1184–1197.
  • [11] Evans, S. N., Morris, B. and Sen, A. (2013). Coalescing systems of non-Brownian particles. Probab. Theory Related Fields 156 307–342.
  • [12] Fontes, L. R. G., Isopi, M., Newman, C. M. and Ravishankar, K. (2004). The Brownian web: Characterization and convergence. Ann. Probab. 32 2857–2883.
  • [13] Garban, C., Pete, G. and Schramm, O. (2013). Pivotal, cluster, and interface measures for critical planar percolation. J. Amer. Math. Soc. 26 939–1024.
  • [14] Garban, C., Pete, G. and Schramm, O. (2013). The scaling limits of near-critical and dynamical percolation. Preprint. Available at arXiv:1305.5526.
  • [15] Jones, O. D. (1996). Transition probabilities for the simple random walk on the Sierpiński graph. Stochastic Process. Appl. 61 45–69.
  • [16] Le Jan, Y. (2006). New developments in stochastic dynamics. In International Congress of Mathematicians. Vol. III 649–667. Eur. Math. Soc., Zürich.
  • [17] Le Jan, Y. and Lemaire, S. (2004). Products of Beta matrices and sticky flows. Probab. Theory Related Fields 130 109–134.
  • [18] Le Jan, Y. and Raimond, O. (2004). Flows, coalescence and noise. Ann. Probab. 32 1247–1315.
  • [19] Le Jan, Y. and Raimond, O. (2004). Sticky flows on the circle and their noises. Probab. Theory Related Fields 129 63–82.
  • [20] Newman, C. M., Ravishankar, K. and Sun, R. (2005). Convergence of coalescing nonsimple random walks to the Brownian web. Electron. J. Probab. 10 21–60.
  • [21] Norris, J. and Turner, A. (2012). Hastings–Levitov aggregation in the small-particle limit. Comm. Math. Phys. 316 809–841.
  • [22] Sarkar, A. and Sun, R. (2013). Brownian web in the scaling limit of supercritical oriented percolation in dimension $1+1$. Electron. J. Probab. 18 no. 21, 23.
  • [23] Schramm, O. and Smirnov, S. (2011). On the scaling limits of planar percolation. Ann. Probab. 39 1768–1814.
  • [24] Spitzer, F. (1976). Principles of Random Walk, 2nd ed. Springer, New York.
  • [25] Tóth, B. and Werner, W. (1998). The true self-repelling motion. Probab. Theory Related Fields 111 375–452.