The Annals of Probability

Multifractal analysis of superprocesses with stable branching in dimension one

Leonid Mytnik and Vitali Wachtel

Full-text: Open access

Abstract

We show that density functions of a $(\alpha,1,\beta)$-superprocesses are almost sure multifractal for $\alpha>\beta+1$, $\beta\in(0,1)$ and calculate the corresponding spectrum of singularities.

Article information

Source
Ann. Probab., Volume 43, Number 5 (2015), 2763-2809.

Dates
Received: January 2013
Revised: July 2014
First available in Project Euclid: 9 September 2015

Permanent link to this document
https://projecteuclid.org/euclid.aop/1441792298

Digital Object Identifier
doi:10.1214/14-AOP951

Mathematical Reviews number (MathSciNet)
MR3395474

Zentralblatt MATH identifier
1332.60122

Subjects
Primary: 60J80: Branching processes (Galton-Watson, birth-and-death, etc.) 28A80: Fractals [See also 37Fxx]
Secondary: 60G57: Random measures

Keywords
Multifractal spectrum superprocess Hölder continuity Hausdorff dimension

Citation

Mytnik, Leonid; Wachtel, Vitali. Multifractal analysis of superprocesses with stable branching in dimension one. Ann. Probab. 43 (2015), no. 5, 2763--2809. doi:10.1214/14-AOP951. https://projecteuclid.org/euclid.aop/1441792298


Export citation

References

  • [1] Dembo, A., Peres, Y., Rosen, J. and Zeitouni, O. (2001). Thick points for planar Brownian motion and the Erdős–Taylor conjecture on random walk. Acta Math. 186 239–270.
  • [2] Durand, A. (2009). Singularity sets of Lévy processes. Probab. Theory Related Fields 143 517–544.
  • [3] Fleischmann, K. (1988). Critical behavior of some measure-valued processes. Math. Nachr. 135 131–147.
  • [4] Fleischmann, K., Mytnik, L. and Wachtel, V. (2010). Optimal local Hölder index for density states of superprocesses with $(1+\beta)$-branching mechanism. Ann. Probab. 38 1180–1220.
  • [5] Fleischmann, K., Mytnik, L. and Wachtel, V. (2011). Hölder index at a given point for density states of super-$\alpha$-stable motion of index $1+\beta$. J. Theoret. Probab. 24 66–92.
  • [6] Hu, X. and Taylor, S. J. (2000). Multifractal structure of a general subordinator. Stochastic Process. Appl. 88 245–258.
  • [7] Jaffard, S. (1999). The multifractal nature of Lévy processes. Probab. Theory Related Fields 114 207–227.
  • [8] Jaffard, S. (2000). On lacunary wavelet series. Ann. Appl. Probab. 10 313–329.
  • [9] Jaffard, S. (2004). Wavelet techniques in multifractal analysis. In Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Part 2. Proc. Sympos. Pure Math. 72 91–151. Amer. Math. Soc., Providence, RI.
  • [10] Jaffard, S. and Meyer, Y. (1996). Wavelet methods for pointwise regularity and local oscillations of functions. Mem. Amer. Math. Soc. 123 x+110.
  • [11] Klenke, A. and Mörters, P. (2005). The multifractal spectrum of Brownian intersection local times. Ann. Probab. 33 1255–1301.
  • [12] Konno, N. and Shiga, T. (1988). Stochastic partial differential equations for some measure-valued diffusions. Probab. Theory Related Fields 79 201–225.
  • [13] Le Gall, J.-F. and Perkins, E. A. (1995). The Hausdorff measure of the support of two-dimensional super-Brownian motion. Ann. Probab. 23 1719–1747.
  • [14] Mörters, P. and Shieh, N.-R. (2004). On the multifractal spectrum of the branching measure on a Galton–Watson tree. J. Appl. Probab. 41 1223–1229.
  • [15] Mytnik, L. and Perkins, E. (2003). Regularity and irregularity of $(1+\beta)$-stable super-Brownian motion. Ann. Probab. 31 1413–1440.
  • [16] Perkins, E. A. and Taylor, S. J. (1998). The multifractal structure of super-Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 34 97–138.
  • [17] Walsh, J. B. (1986). An introduction to stochastic partial differential equations. In École D’été de Probabilités de Saint-Flour, XIV—1984. Lecture Notes in Math. 1180 265–439. Springer, Berlin.