The Annals of Probability

Disorder, entropy and harmonic functions

Itai Benjamini, Hugo Duminil-Copin, Gady Kozma, and Ariel Yadin

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We study harmonic functions on random environments with particular emphasis on the case of the infinite cluster of supercritical percolation on $\mathbb{Z}^{d}$. We prove that the vector space of harmonic functions growing at most linearly is $(d+1)$-dimensional almost surely. Further, there are no nonconstant sublinear harmonic functions (thus implying the uniqueness of the corrector). A main ingredient of the proof is a quantitative, annealed version of the Avez entropy argument. This also provides bounds on the derivative of the heat kernel, simplifying and generalizing existing results. The argument applies to many different environments; even reversibility is not necessary.

Article information

Ann. Probab. Volume 43, Number 5 (2015), 2332-2373.

Received: May 2013
Revised: March 2014
First available in Project Euclid: 9 September 2015

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K37: Processes in random environments
Secondary: 31A05: Harmonic, subharmonic, superharmonic functions 82B43: Percolation [See also 60K35] 37A35: Entropy and other invariants, isomorphism, classification 60B15: Probability measures on groups or semigroups, Fourier transforms, factorization 60J10: Markov chains (discrete-time Markov processes on discrete state spaces) 20P05: Probabilistic methods in group theory [See also 60Bxx]

Harmonic functions percolation random walk in random environment stationary graphs entropy Avez Kaimanovich–Vershik corrector IIC UIPQ planar map anomalous diffusion


Benjamini, Itai; Duminil-Copin, Hugo; Kozma, Gady; Yadin, Ariel. Disorder, entropy and harmonic functions. Ann. Probab. 43 (2015), no. 5, 2332--2373. doi:10.1214/14-AOP934.

Export citation


  • [1] Aldous, D. and Lyons, R. (2007). Processes on unimodular random networks. Electron. J. Probab. 12 1454–1508.
  • [2] Antal, P. and Pisztora, A. (1996). On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24 1036–1048.
  • [3] Avez, A. (1976). Harmonic functions on groups. In Differential Geometry and Relativity. Mathematical Phys. and Appl. Math. 3 27–32. Reidel, Dordrecht.
  • [4] Barlow, M. T. (1998). Diffusions on fractals. Lectures on Probability Theory and Statistics (Saint-Flour, 1995). Lecture Notes in Math. 1690 1–121. Springer, Berlin.
  • [5] Barlow, M. T. (2004). Which values of the volume growth and escape time exponent are possible for a graph? Rev. Mat. Iberoam. 20 1–31.
  • [6] Barlow, M. T. (2004). Random walks on supercritical percolation clusters. Ann. Probab. 32 3024–3084.
  • [7] Barlow, M. T. and Bass, R. F. (1999). Brownian motion and harmonic analysis on Sierpinski carpets. Canad. J. Math. 51 673–744.
  • [8] Barlow, M. T. and Deuschel, J.-D. (2010). Invariance principle for the random conductance model with unbounded conductances. Ann. Probab. 38 234–276.
  • [9] Barlow, M. T. and Hambly, B. M. (2009). Parabolic Harnack inequality and local limit theorem for percolation clusters. Electron. J. Probab. 14 1–27.
  • [10] Barlow, M. T. and Perkins, E. A. (1989). Symmetric Markov chains in $\mathbf{Z}^{d}$: How fast can they move? Probab. Theory Related Fields 82 95–108.
  • [11] Benjamini, I. and Curien, N. (2012). Ergodic theory on stationary random graphs. Electron. J. Probab. 17 20.
  • [12] Benjamini, I. and Curien, N. (2013). Simple random walk on the uniform infinite planar quadrangulation: Subdiffusivity via pioneer points. Geom. Funct. Anal. 23 501–531.
  • [13] Benjamini, I., Lyons, R. and Schramm, O. (1999). Percolation perturbations in potential theory and random walks. In Random Walks and Discrete Potential Theory (Cortona, 1997). Sympos. Math. XXXIX 56–84. Cambridge Univ. Press, Cambridge.
  • [14] Benjamini, I. and Schramm, O. (1996). Harmonic functions on planar and almost planar graphs and manifolds, via circle packings. Invent. Math. 126 565–587.
  • [15] Benjamini, I. and Schramm, O. (2001). Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6 13 pp. (electronic).
  • [16] Berger, N. and Biskup, M. (2007). Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Related Fields 137 83–120.
  • [17] Berger, N., Biskup, M., Hoffman, C. E. and Kozma, G. (2008). Anomalous heat-kernel decay for random walk among bounded random conductances. Ann. Inst. Henri Poincaré Probab. Stat. 44 374–392.
  • [18] Berger, N. and Deuschel, J.-D. (2014). A quenched invariance principle for non-elliptic random walk in i.i.d. balanced random environment. Probab. Theory Related Fields 158 91–126.
  • [19] Biskup, M. and Prescott, T. M. (2007). Functional CLT for random walk among bounded random conductances. Electron. J. Probab. 12 1323–1348.
  • [20] Bolthausen, E., Sznitman, A.-S. and Zeitouni, O. (2003). Cut points and diffusive random walks in random environment. Ann. Inst. Henri Poincaré Probab. Stat. 39 527–555.
  • [21] Buser, P. (1982). A note on the isoperimetric constant. Ann. Sci. École Norm. Sup. (4) 15 213–230.
  • [22] Caputo, P., Faggionato, A. and Prescott, T. (2013). Invariance principle for Mott variable range hopping and other walks on point processes. Ann. Inst. Henri Poincaré Probab. Stat. 49 654–697.
  • [23] Carne, T. K. (1985). A transmutation formula for Markov chains. Bull. Sci. Math. (2) 109 399–405.
  • [24] Chassaing, P. and Durhuus, B. (2006). Local limit of labeled trees and expected volume growth in a random quadrangulation. Ann. Probab. 34 879–917.
  • [25] Choquet, G. and Deny, J. (1960). Sur l’équation de convolution $\mu=\mu\ast\sigma$. C. R. Math. Acad. Sci. Paris 250 799–801.
  • [26] Colding, T. H. and Minicozzi, W. P. II (1997). Harmonic functions on manifolds. Ann. of Math. (2) 146 725–747.
  • [27] Conlon, J. G. and Naddaf, A. (2000). Green’s functions for elliptic and parabolic equations with random coefficients. New York J. Math. 6 153–225 (electronic).
  • [28] Csiszár, I. (1963). Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 85–108.
  • [29] Csiszár, I. (1966). A note on Jensen’s inequality. Studia Sci. Math. Hungar. 1 185–188.
  • [30] Delmotte, T. (1999). Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Mat. Iberoam. 15 181–232.
  • [31] Delmotte, T. (1998). Harnack inequalities on graphs. In Séminaire de Théorie Spectrale et Géométrie, Vol. 16, Année 19971998. Sémin. Théor. Spectr. Géom. 16 217–228. Univ. Grenoble I, Saint-Martin-d’Hères.
  • [32] Delmotte, T. and Deuschel, J.-D. (2005). On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to $\nabla\phi$ interface model. Probab. Theory Related Fields 133 358–390.
  • [33] Derriennic, Y. (1980). Quelques applications du théorème ergodique sous-additif. In Conference on Random Walks (Kleebach, 1979) (French). Astérisque 74 183–201, 4. Soc. Math., France, Paris.
  • [34] Deuschel, J.-D. and Kösters, H. (2008). The quenched invariance principle for random walks in random environments admitting a bounded cycle representation. Ann. Inst. Henri Poincaré Probab. Stat. 44 574–591.
  • [35] De Giorgi, E. (1957). Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3 25–43.
  • [36] De Masi, A., Ferrari, P. A., Goldstein, S. and Wick, W. D. (1989). An invariance principle for reversible Markov processes. Applications to random motions in random environments. J. Stat. Phys. 55 787–855.
  • [37] Disertori, M., Spencer, T. and Zirnbauer, M. R. (2010). Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model. Comm. Math. Phys. 300 435–486.
  • [38] Dudley, R. M. (2002). Real Analysis and Probability. Cambridge Studies in Advanced Mathematics 74. Cambridge Univ. Press, Cambridge.
  • [39] Erschler, A. and Karlsson, A. (2010). Homomorphisms to $\mathbb{R}$ constructed from random walks. Ann. Inst. Fourier (Grenoble) 60 2095–2113.
  • [40] Ferrari, P. A., Grisi, R. M. and Groisman, P. (2012). Harmonic deformation of Delaunay triangulations. Stochastic Process. Appl. 122 2185–2210.
  • [41] Furstenberg, H. (1963). A Poisson formula for semi-simple Lie groups. Ann. of Math. (2) 77 335–386.
  • [42] Furstenberg, H. (1971). Random walks and discrete subgroups of Lie groups. In Advances in Probability and Related Topics, Vol. 1 1–63. Dekker, New York.
  • [43] Gloria, A. and Otto, F. (2011). An optimal variance estimate in stochastic homogenization of discrete elliptic equations. Ann. Probab. 39 779–856.
  • [44] Grimmett, G. (1999). Percolation, 2nd ed. Grundlehren der Mathematischen Wissenschaften 321. Springer, Berlin.
  • [45] Guo, X. and Zeitouni, O. (2012). Quenched invariance principle for random walks in balanced random environment. Probab. Theory Related Fields 152 207–230.
  • [46] Hebisch, W. and Saloff-Coste, L. (1993). Gaussian estimates for Markov chains and random walks on groups. Ann. Probab. 21 673–709.
  • [47] Heydenreich, M., van der Hofstad, R. and Hulshof, T. (2011). High-dimensional incipient infinite clusters revisited. Preprint. Available at
  • [48] Járai, A. A. (2003). Incipient infinite percolation clusters in 2D. Ann. Probab. 31 444–485.
  • [49] Jerison, D. (1986). The Poincaré inequality for vector fields satisfying Hörmander’s condition. Duke Math. J. 53 503–523.
  • [50] Kaimanovich, V. A. and Sobieczky, F. (2010). Stochastic homogenization of horospheric tree products. In Probabilistic Approach to Geometry. Adv. Stud. Pure Math. 57 199–229. Math. Soc. Japan, Tokyo.
  • [51] Kaĭmanovich, V. A. and Vershik, A. M. (1983). Random walks on discrete groups: Boundary and entropy. Ann. Probab. 11 457–490.
  • [52] Kesten, H. (1986). The incipient infinite cluster in two-dimensional percolation. Probab. Theory Related Fields 73 369–394.
  • [53] Kesten, H. (1986). Subdiffusive behavior of random walk on a random cluster. Ann. Inst. Henri Poincaré Probab. Stat. 22 425–487.
  • [54] Kipnis, C. and Varadhan, S. R. S. (1986). Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104 1–19.
  • [55] Kleiner, B. (2010). A new proof of Gromov’s theorem on groups of polynomial growth. J. Amer. Math. Soc. 23 815–829.
  • [56] Kozlov, S. M. (1985). The averaging method and walks in inhomogeneous environments. Uspekhi Mat. Nauk 40 61–120, 238. Russian version available at
  • [57] Kozma, G. and Nachmias, A. (2009). The Alexander–Orbach conjecture holds in high dimensions. Invent. Math. 178 635–654.
  • [58] Krikun, M. (2008). On one property of distances in the infinite random quadrangulation. Preprint. Available at
  • [59] Lawler, G. F. (1982/83). Weak convergence of a random walk in a random environment. Comm. Math. Phys. 87 81–87.
  • [60] Lee, J. R. and Peres, Y. (2013). Harmonic maps on amenable groups and a diffusive lower bound for random walks. Ann. Probab. 41 3392–3419.
  • [61] Li, P. (1993). The theory of harmonic functions and its relation to geometry. In Differential Geometry: Partial Differential Equations on Manifolds (Los Angeles, CA, 1990). Proc. Sympos. Pure Math. 54 307–315. Amer. Math. Soc., Providence, RI.
  • [62] Lyons, R., Pemantle, R. and Peres, Y. (1995). Ergodic theory on Galton–Watson trees: Speed of random walk and dimension of harmonic measure. Ergodic Theory Dynam. Systems 15 593–619.
  • [63] Lyons, T. (1987). Instability of the Liouville property for quasi-isometric Riemannian manifolds and reversible Markov chains. J. Differential Geom. 26 33–66.
  • [64] Lyons, R. and Peres, Y. Probability on trees and networks. Book draft. Available at
  • [65] Margulis, G. A. (1966). Positive harmonic functions on nilpotent groups. Soviet Math. Dokl. 7 241–244.
  • [66] Mathieu, P. and Piatnitski, A. (2007). Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 2287–2307.
  • [67] Moser, J. (1961). On Harnack’s theorem for elliptic differential equations. Comm. Pure Appl. Math. 14 577–591.
  • [68] Moser, J. (1964). A Harnack inequality for parabolic differential equations. Comm. Pure Appl. Math. 17 101–134.
  • [69] Nash, J. (1958). Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80 931–954.
  • [70] Papanicolaou, G. C. and Varadhan, S. R. S. (1982). Diffusions with random coefficients. In Statistics and Probability: Essays in Honor of C. R. Rao 547–552. North-Holland, Amsterdam.
  • [71] Pittet, C. and Saloff-Coste, L. A survey on the relationships between volume growth, isoperimetry, and the behavior of simple random walk on Cayley graphs, with examples. Preprint. Available at
  • [72] Sarig, O. Lecture notes on ergodic theory. Available at
  • [73] Shalom, Y. and Tao, T. (2010). A finitary version of Gromov’s polynomial growth theorem. Geom. Funct. Anal. 20 1502–1547.
  • [74] Sidoravicius, V. and Sznitman, A.-S. (2004). Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Related Fields 129 219–244.
  • [75] Tao, T. (2010). A proof of Gromov’s theorem. Blog. Available at
  • [76] van der Hofstad, R. and Járai, A. A. (2004). The incipient infinite cluster for high-dimensional unoriented percolation. J. Stat. Phys. 114 625–663.
  • [77] Varopoulos, N. T. (1985). Long range estimates for Markov chains. Bull. Sci. Math. (2) 109 225–252.
  • [78] Woess, W. (1994). Random walks on infinite graphs and groups—a survey on selected topics. Bull. Lond. Math. Soc. 26 1–60.
  • [79] Yau, S. T. (1975). Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math. 28 201–228.