The Annals of Probability

On unbounded invariant measures of stochastic dynamical systems

Sara Brofferio and Dariusz Buraczewski

Full-text: Open access

Abstract

We consider stochastic dynamical systems on $\mathbb{R}$, that is, random processes defined by $X_{n}^{x}=\Psi_{n}(X_{n-1}^{x})$, $X_{0}^{x}=x$, where $\Psi_{n}$ are i.i.d. random continuous transformations of some unbounded closed subset of $\mathbb{R}$. We assume here that $\Psi_{n}$ behaves asymptotically like $A_{n}x$, for some random positive number $A_{n}$ [the main example is the affine stochastic recursion $\Psi_{n}(x)=A_{n}x+B_{n}$]. Our aim is to describe invariant Radon measures of the process $X_{n}^{x}$ in the critical case, when $\mathbb{E}\log A_{1}=0$. We prove that those measures behave at infinity like $\frac{dx}{x}$. We study also the problem of uniqueness of the invariant measure. We improve previous results known for the affine recursions and generalize them to a larger class of stochastic dynamical systems which include, for instance, reflected random walks, stochastic dynamical systems on the unit interval $[0,1]$, additive Markov processes and a variant of the Galton–Watson process.

Article information

Source
Ann. Probab., Volume 43, Number 3 (2015), 1456-1492.

Dates
First available in Project Euclid: 5 May 2015

Permanent link to this document
https://projecteuclid.org/euclid.aop/1430830287

Digital Object Identifier
doi:10.1214/13-AOP903

Mathematical Reviews number (MathSciNet)
MR3342668

Zentralblatt MATH identifier
1352.37155

Subjects
Primary: 37Hxx: Random dynamical systems [See also 15B52, 34D08, 34F05, 47B80, 70L05, 82C05, 93Exx] 60J05: Discrete-time Markov processes on general state spaces
Secondary: 60K05: Renewal theory 60B15: Probability measures on groups or semigroups, Fourier transforms, factorization

Keywords
Stochastic recurrence equation stochastic dynamical system invariant measure affine recursion reflected random walk Poisson equation

Citation

Brofferio, Sara; Buraczewski, Dariusz. On unbounded invariant measures of stochastic dynamical systems. Ann. Probab. 43 (2015), no. 3, 1456--1492. doi:10.1214/13-AOP903. https://projecteuclid.org/euclid.aop/1430830287


Export citation

References

  • [1] Aldous, D. (1989). Probability Approximations Via the Poisson Clumping Heuristic. Applied Mathematical Sciences 77. Springer, New York.
  • [2] Babillot, M., Bougerol, P. and Élie, L. (1997). The random difference equation $X_{n}=A_{n}X_{n-1}+B_{n}$ in the critical case. Ann. Probab. 25 478–493.
  • [3] Benda, M. (1998). Schwach kontraktive dynamische Systeme. Ph.D. thesis, Ludwig-Maximilans-Univ. München.
  • [4] Brofferio, S., Buraczewski, D. and Damek, E. (2012). On the invariant measure of the random difference equation $X_{n}=A_{n}X_{n-1}+B_{n}$ in the critical case. Ann. Inst. Henri Poincaré Probab. Stat. 48 377–395.
  • [5] Brofferio, S., Buraczewski, D. and Damek, E. (2013). On solutions of the affine recursion and the smoothing transform in the critical case. In Random Matrices and Iterated Random Functions. Springer Proceedings in Mathematics & Statistics 53 137–157. Springer, Berlin.
  • [6] Buraczewski, D. (2007). On invariant measures of stochastic recursions in a critical case. Ann. Appl. Probab. 17 1245–1272.
  • [7] Chow, Y. S. and Lai, T. L. (1979). Moments of ladder variables for driftless random walks. Z. Wahrsch. Verw. Gebiete 48 253–257.
  • [8] Deroin, B., Kleptsyn, V., Navas, A. and Parwani, K. (2013). Symmetric random walks on $\mathrm{Homeo}^{+}(\mathbb{R})$. Ann. Probab. 41 2066–2089.
  • [9] Diaconis, P. and Freedman, D. (1999). Iterated random functions. SIAM Rev. 41 45–76.
  • [10] Durrett, R. and Liggett, T. M. (1983). Fixed points of the smoothing transformation. Z. Wahrsch. Verw. Gebiete 64 275–301.
  • [11] Élie, L. (1982). Comportement asymptotique du noyau potentiel sur les groupes de Lie. Ann. Sci. École Norm. Sup. (4) 15 257–364.
  • [12] Feller, W. (1966). An Introduction to Probability Theory and Its Applications. Vol. II. Wiley, New York.
  • [13] Goldie, C. M. (1991). Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1 126–166.
  • [14] Grincevičjus, A. K. (1974). A central limit theorem for the group of linear transformations of the line. Dokl. Akad. Nauk SSSR 219 23–26.
  • [15] Kesten, H. (1973). Random difference equations and renewal theory for products of random matrices. Acta Math. 131 207–248.
  • [16] Kolesko, K. (2013). Tail homogeneity of invariant measures of multidimensional stochastic recursions in a critical case. Probab. Theory Related Fields 156 593–612.
  • [17] Le Page, É. and Peigné, M. (1997). A local limit theorem on the semi-direct product of $\mathbf{R}^{*+}$ and $\mathbf{R}^{d}$. Ann. Inst. Henri Poincaré Probab. Stat. 33 223–252.
  • [18] Lin, M. (1970). Conservative Markov processes on a topological space. Israel J. Math. 8 165–186.
  • [19] Mirek, M. (2011). Heavy tail phenomenon and convergence to stable laws for iterated Lipschitz maps. Probab. Theory Related Fields 151 705–734.
  • [20] Peigné, M. and Woess, W. (2011). Stochastic dynamical systems with weak contractivity properties I. Strong and local contractivity. Colloq. Math. 125 31–54.
  • [21] Peigné, M. and Woess, W. (2011). Stochastic dynamical systems with weak contractivity properties II. Iteration of Lipschitz mappings. Colloq. Math. 125 55–81.