The Annals of Probability

Sub and supercritical stochastic quasi-geostrophic equation

Michael Röckner, Rongchan Zhu, and Xiangchan Zhu

Full-text: Open access

Abstract

In this paper, we study the 2D stochastic quasi-geostrophic equation on $\mathbb{T}^{2}$ for general parameter $\alpha\in(0,1)$ and multiplicative noise. We prove the existence of weak solutions and Markov selections for multiplicative noise for all $\alpha\in(0,1)$. In the subcritical case $\alpha>1/2$, we prove existence and uniqueness of (probabilistically) strong solutions. Moreover, we prove ergodicity for the solution of the stochastic quasi-geostrophic equations in the subcritical case driven by possibly degenerate noise. The law of large numbers for the solution of the stochastic quasi-geostrophic equations in the subcritical case is also established. In the case of nondegenerate noise and $\alpha>2/3$ in addition exponential ergodicity is proved.

Article information

Source
Ann. Probab., Volume 43, Number 3 (2015), 1202-1273.

Dates
First available in Project Euclid: 5 May 2015

Permanent link to this document
https://projecteuclid.org/euclid.aop/1430830281

Digital Object Identifier
doi:10.1214/13-AOP887

Mathematical Reviews number (MathSciNet)
MR3342662

Zentralblatt MATH identifier
1322.60121

Subjects
Primary: 60H15: Stochastic partial differential equations [See also 35R60] 60H30: Applications of stochastic analysis (to PDE, etc.) 35R60: Partial differential equations with randomness, stochastic partial differential equations [See also 60H15]

Keywords
Stochastic quasi-geostrophic equation well posedness martingale problem Markov property strong Feller property Markov selections ergodicity for the subcritical case degenerate noise

Citation

Röckner, Michael; Zhu, Rongchan; Zhu, Xiangchan. Sub and supercritical stochastic quasi-geostrophic equation. Ann. Probab. 43 (2015), no. 3, 1202--1273. doi:10.1214/13-AOP887. https://projecteuclid.org/euclid.aop/1430830281


Export citation

References

  • [1] Aldous, D. (1978). Stopping times and tightness. Ann. Probab. 6 335–340.
  • [2] Brannan, J. R., Duan, J. and Wanner, T. (1998). Dissipative quasi-geostrophic dynamics under random forcing. J. Math. Anal. Appl. 228 221–233.
  • [3] Brzeźniak, Z. (1997). On stochastic convolution in Banach spaces and applications. Stochastics Stochastics Rep. 61 245–295.
  • [4] Brzeźniak, Z., van Neerven, J. M. A. M., Veraar, M. C. and Weis, L. (2008). Itô’s formula in UMD Banach spaces and regularity of solutions of the Zakai equation. J. Differential Equations 245 30–58.
  • [5] Caffarelli, L. A. and Vasseur, A. (2010). Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. of Math. (2) 171 1903–1930.
  • [6] Constantin, P., Majda, A. J. and Tabak, E. (1994). Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar. Nonlinearity 7 1495–1533.
  • [7] Constantin, P. and Wu, J. (1999). Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30 937–948.
  • [8] Córdoba, A. and Córdoba, D. (2004). A maximum principle applied to quasi-geostrophic equations. Comm. Math. Phys. 249 511–528.
  • [9] Da Prato, G. (2004). Kolmogorov Equations for Stochastic PDEs. Birkhäuser, Basel.
  • [10] Da Prato, G. and Debussche, A. (2003). Ergodicity for the 3D stochastic Navier–Stokes equations. J. Math. Pures Appl. (9) 82 877–947.
  • [11] Da Prato, G. and Zabczyk, J. (1992). Stochastic Equations in Infinite-Dimensions. Encyclopedia of Mathematics and Its Applications 44. Cambridge Univ. Press, Cambridge.
  • [12] Da Prato, G. and Zabczyk, J. (1996). Ergodicity for Infinite-Dimensional Systems. London Mathematical Society Lecture Note Series 229. Cambridge Univ. Press, Cambridge.
  • [13] Debussche, A. and Odasso, C. (2005). Ergodicity for a weakly damped stochastic non-linear Schrödinger equation. J. Evol. Equ. 5 317–356.
  • [14] Debussche, A. and Odasso, C. (2006). Markov solutions for the 3D stochastic Navier–Stokes equations with state dependent noise. J. Evol. Equ. 6 305–324.
  • [15] Eckmann, J.-P. and Hairer, M. (2001). Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise. Comm. Math. Phys. 219 523–565.
  • [16] Flandoli, F. and Gatarek, D. (1995). Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab. Theory Related Fields 102 367–391.
  • [17] Flandoli, F. and Romito, M. (2007). Regularity of transition semigroups associated to a 3D stochastic Navier–Stokes equation. In Stochastic Differential Equations: Theory and Applications. Interdiscip. Math. Sci. 2 263–280. World Sci. Publ., Hackensack, NJ.
  • [18] Flandoli, F. and Romito, M. (2008). Markov selections for the 3D stochastic Navier–Stokes equations. Probab. Theory Related Fields 140 407–458.
  • [19] Goldys, B. and Maslowski, B. (2005). Exponential ergodicity for stochastic Burgers and 2D Navier–Stokes equations. J. Funct. Anal. 226 230–255.
  • [20] Goldys, B., Röckner, M. and Zhang, X. (2009). Martingale solutions and Markov selections for stochastic partial differential equations. Stochastic Process. Appl. 119 1725–1764.
  • [21] Hairer, M. and Mattingly, J. C. (2006). Ergodicity of the 2D Navier–Stokes equations with degenerate stochastic forcing. Ann. of Math. (2) 164 993–1032.
  • [22] Huang, D., Guo, B. and Han, Y. (2008). Random attractors for a quasi-geostrophic dynamical system under stochastic forcing. Int. J. Dyn. Syst. Differ. Equ. 1 147–154.
  • [23] Ju, N. (2004). Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space. Comm. Math. Phys. 251 365–376.
  • [24] Ju, N. (2005). On the two dimensional quasi-geostrophic equations. Indiana Univ. Math. J. 54 897–926.
  • [25] Kiselev, A. and Nazarov, F. (2010). A variation on a theme of Caffarelli and Vasseur. J. Math. Sci. 166 31–39.
  • [26] Kiselev, A., Nazarov, F. and Volberg, A. (2007). Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167 445–453.
  • [27] Komorowski, T., Peszat, S. and Szarek, T. (2010). On ergodicity of some Markov processes. Ann. Probab. 38 1401–1443.
  • [28] Komorowski, T. and Walczuk, A. (2012). Central limit theorem for Markov processes with spectral gap in the Wasserstein metric. Stochastic Process. Appl. 122 2155–2184.
  • [29] Krylov, N. V. (2010). Itô’s formula for the $L_{p}$-norm of stochastic $W^{1}_{p}$-valued processes. Probab. Theory Related Fields 147 583–605.
  • [30] Kuksin, S., Piatnitski, A. and Shirikyan, A. (2002). A coupling approach to randomly forced nonlinear PDEs. II. Comm. Math. Phys. 230 81–85.
  • [31] Kuksin, S. and Shirikyan, A. (2001). A coupling approach to randomly forced nonlinear PDE’s. I. Comm. Math. Phys. 221 351–366.
  • [32] Kuksin, S. and Shirikyan, A. (2002). Coupling approach to white-forced nonlinear PDEs. J. Math. Pures Appl. (9) 81 567–602.
  • [33] Kurtz, T. G. (2007). The Yamada–Watanabe–Engelbert theorem for general stochastic equations and inequalities. Electron. J. Probab. 12 951–965.
  • [34] Lindvall, T. (1992). Lectures on the Coupling Method. Wiley, New York.
  • [35] Mattingly, J. C. (1999). Ergodicity of 2D Navier–Stokes equations with random forcing and large viscosity. Comm. Math. Phys. 206 273–288.
  • [36] Mattingly, J. C. (2002). Exponential convergence for the stochastically forced Navier–Stokes equations and other partially dissipative dynamics. Comm. Math. Phys. 230 421–462.
  • [37] Mikulevicius, R. and Rozovskii, B. L. (2005). Global $L_{2}$-solutions of stochastic Navier–Stokes equations. Ann. Probab. 33 137–176.
  • [38] Odasso, C. (2006). Ergodicity for the stochastic complex Ginzburg–Landau equations. Ann. Inst. Henri Poincaré Probab. Stat. 42 417–454.
  • [39] Odasso, C. (2007). Exponential mixing for the 3D stochastic Navier–Stokes equations. Comm. Math. Phys. 270 109–139.
  • [40] Odasso, C. (2008). Exponential mixing for stochastic PDEs: The non-additive case. Probab. Theory Related Fields 140 41–82.
  • [41] Ondreját, M. (2005). Brownian representations of cylindrical local martingales, martingale problem and strong Markov property of weak solutions of SPDEs in Banach spaces. Czechoslovak Math. J. 55 1003–1039.
  • [42] Pedlosky, J. (1987). Geophysical Fluid Dynamics. Springer, New York.
  • [43] Prévôt, C. and Röckner, M. (2007). A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Math. 1905. Springer, Berlin.
  • [44] Resnick, S. G. (1995). Dynamical problems in non-linear advective partial differential equations. Ph.D. thesis, Univ. of Chicago.
  • [45] Röckner, M., Schmuland, B. and Zhang, X. (2008). Yamada–Watanabe theorem for stochastic evolution equations in infinite dimensions. Condensed Matter Physics 54 247–259.
  • [46] Romito, M. (2008). Analysis of equilibrium states of Markov solutions to the 3D Navier–Stokes equations driven by additive noise. J. Stat. Phys. 131 415–444.
  • [47] Stein, E. M. (1970). Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series 30. Princeton Univ. Press, Princeton, N.J.
  • [48] Stroock, D. W. and Varadhan, S. R. S. (1979). Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 233. Springer, Berlin.
  • [49] Temam, R. (1984). Navier–Stokes Equations: Theory and Numerical Analysis, 3rd ed. Studies in Mathematics and Its Applications 2. North-Holland, Amsterdam.
  • [50] Zhu, R. C. and Zhu, X. C. (2012). Random attractor associated with the quasi-geostrophic equation. Preprint. Available at arXiv:1303.5970.