The Annals of Probability

A copolymer near a selective interface: Variational characterization of the free energy

Erwin Bolthausen, Frank den Hollander, and Alex A. Opoku

Full-text: Open access

Abstract

In this paper, we consider a random copolymer near a selective interface separating two solvents. The configurations of the copolymer are directed paths that can make i.i.d. excursions of finite length above and below the interface. The excursion length distribution is assumed to have a tail that is logarithmically equivalent to a power law with exponent $\alpha\geq1$. The monomers carry i.i.d. real-valued types whose distribution is assumed to have zero mean, unit variance, and a finite moment generating function. The interaction Hamiltonian rewards matches and penalizes mismatches of the monomer types and the solvents, and depends on two parameters: the interaction strength $\beta\geq0$ and the interaction bias $h\geq0$. We are interested in the behavior of the copolymer in the limit as its length tends to infinity.

The quenched free energy per monomer $(\beta,h)\shortmid\!\rightarrow g^{\mathrm{que}}(\beta,h)$ has a phase transition along a quenched critical curve $\beta\shortmid\!\rightarrow h^{\mathrm{que}}_{c}(\beta)$ separating a localized phase, where the copolymer stays close to the interface, from a delocalized phase, where the copolymer wanders away from the interface. We derive variational formulas for both these quantities. We compare these variational formulas with their analogues for the annealed free energy per monomer $(\beta,h)\shortmid\!\rightarrow g^{\mathrm{ann}}(\beta,h)$ and the annealed critical curve $\beta\shortmid\!\rightarrow h^{\mathrm{ann}}_{c}(\beta)$, both of which are explicitly computable. This comparison leads to:

(1) A proof that $g^{\mathrm{que}}(\beta,h)<g^{\mathrm{ann}}(\beta,h)$ for all $\alpha\geq1$ and $(\beta,h)$ in the annealed localized phase.

(2) A proof that $h_{c}^{\mathrm{ann}}(\beta/\alpha)<h_{c}^{\mathrm{que}}(\beta)<h_{c}^{\mathrm{ann}}(\beta)$ for all $\alpha>1$ and $\beta>0$.

(3) A proof that $\liminf_{\beta\downarrow0}h_{c}^{\mathrm{que}}(\beta)/\beta\geq(1+\alpha)/2\alpha$ for all $\alpha\geq2$.

(4) A proof that $\liminf_{\beta\downarrow0}h_{c}^{\mathrm{que}}(\beta)/\beta\geq K_{c}^{*}(\alpha)$ for all $1<\alpha<2$ with $K_{c}^{*}(\alpha)$ given by an explicit integral criterion.

(5) An upper bound on the total number of times the copolymer visits the interface in the interior of the quenched delocalized phase.

(6) An identification of the asymptotic frequency at which the copolymer visits the interface in the quenched localized phase.

The copolymer model has been studied extensively in the literature. The goal of the present paper is to open up a window with a variational view and to settle a number of open problems.

Article information

Source
Ann. Probab., Volume 43, Number 2 (2015), 875-933.

Dates
First available in Project Euclid: 2 February 2015

Permanent link to this document
https://projecteuclid.org/euclid.aop/1422885576

Digital Object Identifier
doi:10.1214/14-AOP880

Mathematical Reviews number (MathSciNet)
MR3306006

Zentralblatt MATH identifier
1330.60116

Subjects
Primary: 60F10: Large deviations 60K37: Processes in random environments
Secondary: 82B27: Critical phenomena 82B44: Disordered systems (random Ising models, random Schrödinger operators, etc.)

Keywords
Copolymer selective interface free energy critical curve localization vs delocalization large deviation principle variational formula specific relative entropy

Citation

Bolthausen, Erwin; den Hollander, Frank; Opoku, Alex A. A copolymer near a selective interface: Variational characterization of the free energy. Ann. Probab. 43 (2015), no. 2, 875--933. doi:10.1214/14-AOP880. https://projecteuclid.org/euclid.aop/1422885576


Export citation

References

  • [1] Berger, Q., Caravenna, F., Poisat, J., Sun, R. and Zygouras, N. (2014). The critical curves of the random pinning and copolymer models at weak coupling. Comm. Math. Phys. 326 507–530.
  • [2] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation. Encyclopedia of Mathematics and Its Applications 27. Cambridge Univ. Press, Cambridge.
  • [3] Birkner, M. (2008). Conditional large deviations for a sequence of words. Stochastic Process. Appl. 118 703–729.
  • [4] Birkner, M., Greven, A. and den Hollander, F. (2010). Quenched large deviation principle for words in a letter sequence. Probab. Theory Related Fields 148 403–456.
  • [5] Birkner, M., Greven, A. and den Hollander, F. (2011). Collision local time of transient random walks and intermediate phases in interacting stochastic systems. Electron. J. Probab. 16 552–586.
  • [6] Biskup, M. and den Hollander, F. (1999). A heteropolymer near a linear interface. Ann. Appl. Probab. 9 668–687.
  • [7] Bodineau, T. and Giacomin, G. (2004). On the localization transition of random copolymers near selective interfaces. J. Stat. Phys. 117 801–818.
  • [8] Bodineau, T., Giacomin, G., Lacoin, H. and Toninelli, F. L. (2008). Copolymers at selective interfaces: New bounds on the phase diagram. J. Stat. Phys. 132 603–626.
  • [9] Bolthausen, E. and den Hollander, F. (1997). Localization transition for a polymer near an interface. Ann. Probab. 25 1334–1366.
  • [10] Caravenna, F. and Giacomin, G. (2005). On constrained annealed bounds for pinning and wetting models. Electron. Commun. Probab. 10 179–189 (electronic).
  • [11] Caravenna, F. and Giacomin, G. (2010). The weak coupling limit of disordered copolymer models. Ann. Probab. 38 2322–2378.
  • [12] Caravenna, F., Giacomin, G. and Gubinelli, M. (2006). A numerical approach to copolymers at selective interfaces. J. Stat. Phys. 122 799–832.
  • [13] Caravenna, F., Giacomin, G. and Toninelli, F. L. (2012). Copolymers at selective interfaces: Settled issues and open problems. In Probability in Complex Physical Systems. Proceedings in Mathematics 11 289–310. Springer, Berlin.
  • [14] Cheliotis, D. and den Hollander, F. (2013). Variational characterization of the critical curve for pinning of random polymers. Ann. Probab. 41 1767–1805.
  • [15] Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications, 2nd ed. Applications of Mathematics (New York) 38. Springer, New York.
  • [16] den Hollander, F. (2009). Random Polymers. Lecture Notes in Math. 1974. Springer, Berlin.
  • [17] den Hollander, F. (2010). A key large deviation principle for interacting stochastic systems. In Proceedings of the International Congress of Mathematicians. Volume IV 2258–2274. Hindustan Book Agency, New Delhi.
  • [18] den Hollander, F. and Opoku, A. A. (2013). Copolymer with pinning: Variational characterization of the phase diagram. J. Stat. Phys. 152 846–893.
  • [19] Feller, V. (1968). An Introduction to Probability Theory and Its Applications, 3rd ed. Wiley, New York.
  • [20] Garel, T., Huse, D. A., Leibler, S. and Orland, H. (1989). Localization transition of random chains at interfaces. Europhys. Lett. 8 9–13.
  • [21] Giacomin, G. (2007). Random Polymer Models. Imperial College Press, London.
  • [22] Giacomin, G. and Toninelli, F. L. (2005). Estimates on path delocalization for copolymers at selective interfaces. Probab. Theory Related Fields 133 464–482.
  • [23] Giacomin, G. and Toninelli, F. L. (2006). Smoothing of depinning transitions for directed polymers with quenched disorder. Phys. Rev. Lett. 96 070602.
  • [24] Giacomin, G. and Toninelli, F. L. (2006). Smoothing effect of quenched disorder on polymer depinning transitions. Comm. Math. Phys. 266 1–16.
  • [25] Giacomin, G. and Toninelli, F. L. (2006). The localized phase of disordered copolymers with adsorption. ALEA Lat. Am. J. Probab. Math. Stat. 1 149–180.
  • [26] Mourrat, J.-C. (2012). On the delocalized phase of the random pinning model. In Séminaire de Probabilités XLIV 401–407. Springer, Heidelberg.
  • [27] Orlandini, E., Rechnitzer, A. and Whittington, S. G. (2002). Random copolymers and the Morita approximation: Polymer adsorption and polymer localization. J. Phys. A 35 7729–7751.
  • [28] Toninelli, F. L. (2008). Disordered pinning models and copolymers: Beyond annealed bounds. Ann. Appl. Probab. 18 1569–1587.
  • [29] Toninelli, F. L. (2009). Coarse graining, fractional moments and the critical slope of random copolymers. Electron. J. Probab. 14 531–547.