The Annals of Probability

Critical two-point functions for long-range statistical-mechanical models in high dimensions

Lung-Chi Chen and Akira Sakai

Full-text: Open access

Abstract

We consider long-range self-avoiding walk, percolation and the Ising model on $\mathbb{Z}^{d}$ that are defined by power-law decaying pair potentials of the form $D(x)\asymp|x|^{-d-\alpha}$ with $\alpha>0$. The upper-critical dimension $d_{\mathrm{c}}$ is $2(\alpha\wedge2)$ for self-avoiding walk and the Ising model, and $3(\alpha\wedge2)$ for percolation. Let $\alpha\ne2$ and assume certain heat-kernel bounds on the $n$-step distribution of the underlying random walk. We prove that, for $d>d_{\mathrm{c}}$ (and the spread-out parameter sufficiently large), the critical two-point function $G_{p_{\mathrm{c}}}(x)$ for each model is asymptotically $C|x|^{\alpha\wedge2-d}$, where the constant $C\in(0,\infty)$ is expressed in terms of the model-dependent lace-expansion coefficients and exhibits crossover between $\alpha<2$ and $\alpha>2$. We also provide a class of random walks that satisfy those heat-kernel bounds.

Article information

Source
Ann. Probab., Volume 43, Number 2 (2015), 639-681.

Dates
First available in Project Euclid: 2 February 2015

Permanent link to this document
https://projecteuclid.org/euclid.aop/1422885572

Digital Object Identifier
doi:10.1214/13-AOP843

Mathematical Reviews number (MathSciNet)
MR3306002

Zentralblatt MATH identifier
1342.60162

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82B20: Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs 82B27: Critical phenomena 82B41: Random walks, random surfaces, lattice animals, etc. [See also 60G50, 82C41] 82B43: Percolation [See also 60K35]

Keywords
Critical behavior long-range random walk self-avoiding walk percolation the Ising model two-point function lace expansion

Citation

Chen, Lung-Chi; Sakai, Akira. Critical two-point functions for long-range statistical-mechanical models in high dimensions. Ann. Probab. 43 (2015), no. 2, 639--681. doi:10.1214/13-AOP843. https://projecteuclid.org/euclid.aop/1422885572


Export citation

References

  • [1] Aizenman, M. (1982). Geometric analysis of $\varphi^{4}$ fields and Ising models. I, II. Comm. Math. Phys. 86 1–48.
  • [2] Aizenman, M. and Fernández, R. (1986). On the critical behavior of the magnetization in high-dimensional Ising models. J. Stat. Phys. 44 393–454.
  • [3] Aizenman, M. and Newman, C. M. (1984). Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys. 36 107–143.
  • [4] Aizenman, M. and Newman, C. M. (1986). Discontinuity of the percolation density in one-dimensional $1/\vert x-y\vert^{2}$ percolation models. Comm. Math. Phys. 107 611–647.
  • [5] Barsky, D. J. and Aizenman, M. (1991). Percolation critical exponents under the triangle condition. Ann. Probab. 19 1520–1536.
  • [6] Bhattacharya, R. N. and Rao, R. R. (2010). Normal Approximation and Asymptotic Expansions. Classics in Applied Mathematics 64. SIAM, Philadelphia, PA.
  • [7] Blumenthal, R. M. and Getoor, R. K. (1968). Markov Processes and Potential Theory. Academic Press, New York.
  • [8] Bogdan, K. and Jakubowski, T. (2007). Estimates of heat kernel of fractional Laplacian perturbed by gradient operators. Comm. Math. Phys. 271 179–198.
  • [9] Chen, L.-C. and Sakai, A. (2008). Critical behavior and the limit distribution for long-range oriented percolation. I. Probab. Theory Related Fields 142 151–188.
  • [10] Chen, L.-C. and Sakai, A. (2009). Critical behavior and the limit distribution for long-range oriented percolation. II. Spatial correlation. Probab. Theory Related Fields 145 435–458.
  • [11] Chen, L.-C. and Sakai, A. (2011). Asymptotic behavior of the gyration radius for long-range self-avoiding walk and long-range oriented percolation. Ann. Probab. 39 507–548.
  • [12] Ginibre, J. (1970). General formulation of Griffiths’ inequalities. Comm. Math. Phys. 16 310–328.
  • [13] Griffiths, R. B., Hurst, C. A. and Sherman, S. (1970). Concavity of magnetization of an Ising ferromagnet in a positive external field. J. Math. Phys. 11 790–795.
  • [14] Grimmett, G. (1999). Percolation, 2nd ed. Springer, Berlin.
  • [15] Hara, T. (2008). Decay of correlations in nearest-neighbor self-avoiding walk, percolation, lattice trees and animals. Ann. Probab. 36 530–593.
  • [16] Hara, T., Heydenreich, M. and Sakai, A. One-arm exponent for the Ising ferromagnets in high dimensions. In preparation.
  • [17] Hara, T. and Slade, G. (1990). Mean-field critical behaviour for percolation in high dimensions. Comm. Math. Phys. 128 333–391.
  • [18] Hara, T., van der Hofstad, R. and Slade, G. (2003). Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models. Ann. Probab. 31 349–408.
  • [19] Heydenreich, M., van der Hofstad, R. and Hulshof, T. (2011). High-dimensional incipient infinite clusters revisited. Preprint. Available at arXiv:1108.4325.
  • [20] Heydenreich, M., van der Hofstad, R. and Sakai, A. (2008). Mean-field behavior for long- and finite range Ising model, percolation and self-avoiding walk. J. Stat. Phys. 132 1001–1049.
  • [21] Kozma, G. and Nachmias, A. (2011). Arm exponents in high dimensional percolation. J. Amer. Math. Soc. 24 375–409.
  • [22] Madras, N. and Slade, G. (1993). The Self-Avoiding Walk. Birkhäuser, Boston, MA.
  • [23] Sakai, A. (2004). Mean-field behavior for the survival probability and the percolation point-to-surface connectivity. J. Stat. Phys. 117 111–130.
  • [24] Sakai, A. (2007). Lace expansion for the Ising model. Comm. Math. Phys. 272 283–344.
  • [25] Slade, G. (2006). The Lace Expansion and Its Applications. Lecture Notes in Math. 1879. Springer, Berlin.
  • [26] van den Berg, J. and Kesten, H. (1985). Inequalities with applications to percolation and reliability. J. Appl. Probab. 22 556–569.
  • [27] van der Hofstad, R. and Slade, G. (2002). A generalised inductive approach to the lace expansion. Probab. Theory Related Fields 122 389–430.