The Annals of Probability

Asymptotics of uniformly random lozenge tilings of polygons. Gaussian free field

Leonid Petrov

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We study large-scale height fluctuations of random stepped surfaces corresponding to uniformly random lozenge tilings of polygons on the triangular lattice. For a class of polygons (which allows arbitrarily large number of sides), we show that these fluctuations are asymptotically governed by a Gaussian free (massless) field. This complements the similar result obtained in Kenyon [Comm. Math. Phys. 281 (2008) 675–709] about tilings of regions without frozen facets of the limit shape.

In our asymptotic analysis we use the explicit double contour integral formula for the determinantal correlation kernel of the model obtained previously in Petrov [Asymptotics of random lozenge tilings via Gelfand–Tsetlin schemes (2012) Preprint].

Article information

Source
Ann. Probab. Volume 43, Number 1 (2015), 1-43.

Dates
First available in Project Euclid: 12 November 2014

Permanent link to this document
https://projecteuclid.org/euclid.aop/1415801551

Digital Object Identifier
doi:10.1214/12-AOP823

Mathematical Reviews number (MathSciNet)
MR3298467

Zentralblatt MATH identifier
1315.60062

Subjects
Primary: 60G55: Point processes
Secondary: 60G15: Gaussian processes 60C05: Combinatorial probability 82C22: Interacting particle systems [See also 60K35]

Keywords
Random lozenge tilings dimer model height function Gaussian free field determinantal point processes

Citation

Petrov, Leonid. Asymptotics of uniformly random lozenge tilings of polygons. Gaussian free field. Ann. Probab. 43 (2015), no. 1, 1--43. doi:10.1214/12-AOP823. https://projecteuclid.org/euclid.aop/1415801551


Export citation

References

  • Baik, J., Kriecherbauer, T., McLaughlin, K. T. R. and Miller, P. D. (2007). Discrete Orthogonal Polynomials: Asymptotics and Applications. Annals of Mathematics Studies 164. Princeton Univ. Press, Princeton, NJ.
  • Borodin, A. (2011). Determinantal point processes. In Oxford Handbook of Random Matrix Theory (G. Akemann, J. Baik and P. Di Francesco, eds.). Oxford Univ. Press, Oxford.
  • Borodin, A. and Ferrari, P. L. (2008). Anisotropic growth of random surfaces in $2+1$ dimensions. Available at arXiv:0804.3035 [math-ph].
  • Borodin, A., Ferrari, P. L. and Sasamoto, T. (2008). Large time asymptotics of growth models on space-like paths. II. PNG and parallel TASEP. Comm. Math. Phys. 283 417–449.
  • Borodin, A. and Gorin, V. (2009). Shuffling algorithm for boxed plane partitions. Adv. Math. 220 1739–1770.
  • Borodin, A., Gorin, V. and Rains, E. M. (2010). $q$-distributions on boxed plane partitions. Selecta Math. (N.S.) 16 731–789.
  • Borodin, A., Okounkov, A. and Olshanski, G. (2000). Asymptotics of Plancherel measures for symmetric groups. J. Amer. Math. Soc. 13 481–515 (electronic).
  • Cohn, H., Kenyon, R. and Propp, J. (2001). A variational principle for domino tilings. J. Amer. Math. Soc. 14 297–346 (electronic).
  • Cohn, H., Larsen, M. and Propp, J. (1998). The shape of a typical boxed plane partition. New York J. Math. 4 137–165 (electronic).
  • Destainville, N. (1998). Entropy and boundary conditions in random rhombus tilings. J. Phys. A 31 6123–6139.
  • Destainville, N., Mosseri, R. and Bailly, F. (1997). Configurational entropy of codimension-one tilings and directed membranes. J. Stat. Phys. 87 697–754.
  • Duits, M. (2011). The Gaussian free field in an interlacing particle system with two jump rates. Available at arXiv:1105.4656 [math-ph].
  • Gorin, V. E. (2008). Nonintersecting paths and the Hahn orthogonal polynomial ensemble. Funct. Anal. Appl. 42 180–197.
  • Hough, J. B., Krishnapur, M., Peres, Y. and Virág, B. (2006). Determinantal processes and independence. Probab. Surv. 3 206–229.
  • Kenyon, R. (2008). Height fluctuations in the honeycomb dimer model. Comm. Math. Phys. 281 675–709.
  • Kenyon, R. (2009). Lectures on dimers. In Statistical Mechanics. IAS/Park City Math. Ser. 16 191–230. Amer. Math. Soc., Providence, RI.
  • Kenyon, R. and Okounkov, A. (2007). Limit shapes and the complex Burgers equation. Acta Math. 199 263–302.
  • Kenyon, R., Okounkov, A. and Sheffield, S. (2006). Dimers and amoebae. Ann. of Math. (2) 163 1019–1056.
  • Kuan, J. (2011). The Gaussian free field in interlacing particle systems. Available at arXiv:1109.4444 [math-ph].
  • Okounkov, A. (2002). Symmetric functions and random partitions. In Symmetric Functions 2001: Surveys of Developments and Perspectives (S. Fomin, ed.). Kluwer Academic, Dordrecht.
  • Okounkov, A. and Reshetikhin, N. (2003). Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. J. Amer. Math. Soc. 16 581–603 (electronic).
  • Petrov, L. (2012). Asymptotics of random lozenge tilings via Gelfand–Tsetlin schemes. Available at arXiv:1202.3901 [math.PR].
  • Sheffield, S. (2005). Random surfaces. Astérisque 304 vi+175.
  • Sheffield, S. (2007). Gaussian free fields for mathematicians. Probab. Theory Related Fields 139 521–541.
  • Soshnikov, A. (2000). Determinantal random point fields. Russian Math. Surveys 55 923–975.