The Annals of Probability

From duality to determinants for q-TASEP and ASEP

Alexei Borodin, Ivan Corwin, and Tomohiro Sasamoto

Full-text: Open access


We prove duality relations for two interacting particle systems: the $q$-deformed totally asymmetric simple exclusion process ($q$-TASEP) and the asymmetric simple exclusion process (ASEP). Expectations of the duality functionals correspond to certain joint moments of particle locations or integrated currents, respectively. Duality implies that they solve systems of ODEs. These systems are integrable and for particular step and half-stationary initial data we use a nested contour integral ansatz to provide explicit formulas for the systems’ solutions, and hence also the moments.

We form Laplace transform-like generating functions of these moments and via residue calculus we compute two different types of Fredholm determinant formulas for such generating functions. For ASEP, the first type of formula is new and readily lends itself to asymptotic analysis (as necessary to reprove GUE Tracy–Widom distribution fluctuations for ASEP), while the second type of formula is recognizable as closely related to Tracy and Widom’s ASEP formula [Comm. Math. Phys. 279 (2008) 815–844, J. Stat. Phys. 132 (2008) 291–300, Comm. Math. Phys. 290 (2009) 129–154, J. Stat. Phys. 140 (2010) 619–634]. For $q$-TASEP, both formulas coincide with those computed via Borodin and Corwin’s Macdonald processes [Probab. Theory Related Fields (2014) 158 225–400].

Both $q$-TASEP and ASEP have limit transitions to the free energy of the continuum directed polymer, the logarithm of the solution of the stochastic heat equation or the Hopf–Cole solution to the Kardar–Parisi–Zhang equation. Thus, $q$-TASEP and ASEP are integrable discretizations of these continuum objects; the systems of ODEs associated to their dualities are deformed discrete quantum delta Bose gases; and the procedure through which we pass from expectations of their duality functionals to characterizing generating functions is a rigorous version of the replica trick in physics.

Article information

Ann. Probab., Volume 42, Number 6 (2014), 2314-2382.

First available in Project Euclid: 30 September 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 82C22: Interacting particle systems [See also 60K35] 82B23: Exactly solvable models; Bethe ansatz 60H15: Stochastic partial differential equations [See also 35R60]

Interacting particle systems Kardar–Parisi–Zhang universality class Markov duality asymmetric simple exclusion process


Borodin, Alexei; Corwin, Ivan; Sasamoto, Tomohiro. From duality to determinants for q -TASEP and ASEP. Ann. Probab. 42 (2014), no. 6, 2314--2382. doi:10.1214/13-AOP868.

Export citation


  • [1] Amir, G., Corwin, I. and Quastel, J. (2011). Probability distribution of the free energy of the continuum directed random polymer in $1+1$ dimensions. Comm. Pure Appl. Math. 64 466–537.
  • [2] Andrews, G. E., Askey, R. and Roy, R. (1999). Special Functions. Cambridge Univ. Press, Cambridge.
  • [3] Balázs, M., Komjáthy, J. and Seppäläinen, T. (2012). Microscopic concavity and fluctuation bounds in a class of deposition processes. Ann. Inst. Henri Poincaré Probab. Stat. 48 151–187.
  • [4] Bangerezako, G. (2007). An introduction to $q$-difference equations. Preprint. Available at
  • [5] Bertini, L. and Giacomin, G. (1997). Stochastic Burgers and KPZ equations from particle systems. Comm. Math. Phys. 183 571–607.
  • [6] Bogoliubov, N. M., Izergin, A. G. and Kitanine, N. A. (1998). Correlation functions for a strongly correlated Boson system. Nuclear Phys. B 516 501–528.
  • [7] Bornemann, F. (2010). On the numerical evaluation of Fredholm determinants. Math. Comp. 79 871–915.
  • [8] Borodin, A. and Corwin, I. (2013). Discrete time $q$-TASEPs. Int. Math. Res. Not. DOI:10.1093/imrn/rnt206.
  • [9] Borodin, A. and Corwin, I. (2014). Macdonald processes. Probab. Theory Related Fields 158 225–400.
  • [10] Borodin, A., Corwin, I. and Ferrari, P. (2014). Free energy fluctuations for directed polymers in random media in $1+1$ dimension. Comm. Pure Appl. Math. 67 1129–1214.
  • [11] Borodin, A. and Petrov, L. (2014). Integrable probability: From representation theory to Macdonald processes. Probab. Surv. 11 1–58.
  • [12] Calabrese, P., Le Doussal, P. and Rosso, A. (2010). Free-energy distribution of the directed polymer at high temperature. Europhys. Lett. 90 20002.
  • [13] Coddington, E. A. and Levinson, N. (1955). Theory of Ordinary Differential Equations. McGraw-Hill, New York.
  • [14] Corwin, I. (2012). The Kardar–Parisi–Zhang equation and universality class. Random Matrices: Theory Appl. 1 1130001, 76.
  • [15] Dotsenko, V. (2010). Bethe ansatz derivation of the Tracy–Widom distribution for one-dimensional directed polymers. Europhys. Lett. 90 20003.
  • [16] Gärtner, J. (1988). Convergence towards Burgers’ equation and propagation of chaos for weakly asymmetric exclusion processes. Stochastic Process. Appl. 27 233–260.
  • [17] Hahn, W. (1949). Beiträge zur Theorie der Heineschen Reihen. Die $24$ Integrale der Hypergeometrischen $q$-Differenzengleichung. Das $q$-Analogon der Laplace-Transformation. Math. Nachr. 2 340–379.
  • [18] Hobson, T. and Tribe, R. (2005). On the duality between coalescing Brownian particles and the heat equation driven by Fisher–Wright noise. Electron. Commun. Probab. 10 136–145 (electronic).
  • [19] Imamura, T. and Sasamoto, T. (2011). Current moments of 1D ASEP by duality. J. Stat. Phys. 142 919–930.
  • [20] Imamura, T. and Sasamoto, T. (2012). Exact solution for the stationary Kardar–Parisi–Zhang equation. Phys. Rev. Lett. 108 190603.
  • [21] Johansson, K. (2000). Shape fluctuations and random matrices. Comm. Math. Phys. 209 437–476.
  • [22] Kac, V. and Cheung, P. (2002). Quantum Calculus. Springer, New York.
  • [23] Lax, P. D. (2002). Functional Analysis. Wiley, New York.
  • [24] Liggett, T. M. (2005). Interacting Particle Systems. Springer, Berlin.
  • [25] Macdonald, I. G. (1995). Symmetric Functions and Hall Polynomials, 2nd ed. Oxford Univ. Press, New York.
  • [26] MacDonald, J., Gibbs, J. and Pipkin, A. (1968). Kinetics of biopolymerization on nucleic acid templates. Biopolymers 6 1–25.
  • [27] Moreno Flores, G., Remenik, D. and Quastel, J. Unpublished manuscript.
  • [28] O’Connell, N. (2012). Directed polymers and the quantum Toda lattice. Ann. Probab. 40 437–458.
  • [29] O’Connell, N. and Yor, M. (2001). Brownian analogues of Burke’s theorem. Stochastic Process. Appl. 96 285–304.
  • [30] Povolotsky, A. M. (2004). Bethe ansatz solution of zero-range process with nonuniform stationary state. Phys. Rev. E (3) 69 061109, 7.
  • [31] Sandow, S. and Schütz, G. (1994). On $U_{q}[\mathrm{SU}(2)]$-symmetric driven diffusion. Europhys. Lett. 26 7–12.
  • [32] Sasamoto, T. and Spohn, H. (2010). The crossover regime for the weakly asymmetric simple exclusion process. J. Stat. Phys. 140 209–231.
  • [33] Sasamoto, T. and Wadati, M. (1998). Exact results for one-dimensional totally asymmetric diffusion models. J. Phys. A 31 6057–6071.
  • [34] Schütz, G. M. (1997). Duality relations for asymmetric exclusion processes. J. Stat. Phys. 86 1265–1287.
  • [35] Spitzer, F. (1970). Interaction of Markov processes. Adv. Math. 5 246–290.
  • [36] Spohn, H. (1991). Large Scale Dynamics of Interacting Particles. Springer, Berlin.
  • [37] Spohn, H. (2012). Stochastic Integrability and the KPZ Equation. IAMP News Bulletin.
  • [38] Tracy, C. A. and Widom, H. (2008). Integral formulas for the asymmetric simple exclusion process. Comm. Math. Phys. 279 815–844.
  • [39] Tracy, C. A. and Widom, H. (2008). A Fredholm determinant representation in ASEP. J. Stat. Phys. 132 291–300.
  • [40] Tracy, C. A. and Widom, H. (2009). Asymptotics in ASEP with step initial condition. Comm. Math. Phys. 290 129–154.
  • [41] Tracy, C. A. and Widom, H. (2010). Formulas for ASEP with two-sided Bernoulli initial condition. J. Stat. Phys. 140 619–634.