The Annals of Probability

Komlós–Major–Tusnády approximation under dependence

István Berkes, Weidong Liu, and Wei Biao Wu

Full-text: Open access

Abstract

The celebrated results of Komlós, Major and Tusnády [Z. Wahrsch. Verw. Gebiete 32 (1975) 111–131; Z. Wahrsch. Verw. Gebiete 34 (1976) 33–58] give optimal Wiener approximation for the partial sums of i.i.d. random variables and provide a powerful tool in probability and statistics. In this paper we extend KMT approximation for a large class of dependent stationary processes, solving a long standing open problem in probability theory. Under the framework of stationary causal processes and functional dependence measures of Wu [Proc. Natl. Acad. Sci. USA 102 (2005) 14150–14154], we show that, under natural moment conditions, the partial sum processes can be approximated by Wiener process with an optimal rate. Our dependence conditions are mild and easily verifiable. The results are applied to ergodic sums, as well as to nonlinear time series and Volterra processes, an important class of nonlinear processes.

Article information

Source
Ann. Probab., Volume 42, Number 2 (2014), 794-817.

Dates
First available in Project Euclid: 24 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aop/1393251303

Digital Object Identifier
doi:10.1214/13-AOP850

Mathematical Reviews number (MathSciNet)
MR3178474

Zentralblatt MATH identifier
1308.60037

Subjects
Primary: 60F17: Functional limit theorems; invariance principles 60G10: Stationary processes 60G17: Sample path properties

Keywords
Stationary processes strong invariance principle KMT approximation weak dependence nonlinear time series ergodic sums

Citation

Berkes, István; Liu, Weidong; Wu, Wei Biao. Komlós–Major–Tusnády approximation under dependence. Ann. Probab. 42 (2014), no. 2, 794--817. doi:10.1214/13-AOP850. https://projecteuclid.org/euclid.aop/1393251303


Export citation

References

  • Bendat (1990) Bendat, J. S. (1990). Nonlinear System Analysis and Identification from Random Data. Wiley, New York.
  • Berkes, Hörmann and Schauer (2011) Berkes, I., Hörmann, S. and Schauer, J. (2011). Split invariance principles for stationary processes. Ann. Probab. 39 2441–2473.
  • Billingsley (1968) Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.
  • Bradley (2007) Bradley, R. C. (2007). Introduction to Strong Mixing Conditions. Kendrick Press, Heber City, UT.
  • Casti (1985) Casti, J. L. (1985). Nonlinear System Theory. Mathematics in Science and Engineering 175. Academic Press, Orlando, FL.
  • Chatterjee (2012) Chatterjee, S. (2012). A new approach to strong embeddings. Probab. Theory Related Fields 152 231–264.
  • Csörgő and Hall (1984) Csörgő, S. and Hall, P. (1984). The Komlós–Major–Tusnády approximations and their applications. Austral. J. Statist. 26 189–218.
  • Csörgő and Révész (1974/75) Csörgő, M. and Révész, P. (1974/75). A new method to prove Strassen type laws of invariance principle. I, II. Z. Wahrsch. Verw. Gebiete 31 255–259; ibid. 31 261–269.
  • Csörgő and Révész (1981) Csörgő, M. and Révész, P. (1981). Strong Approximations in Probability and Statistics. Academic Press, New York.
  • Dedecker, Doukhan and Merlevède (2012) Dedecker, J., Doukhan, P. and Merlevède, F. (2012). Rates of convergence in the strong invariance principle under projective criteria. Electron. J. Probab. 17 31.
  • Dedecker and Merlevède (2003) Dedecker, J. and Merlevède, F. (2003). The conditional central limit theorem in Hilbert spaces. Stochastic Process. Appl. 108 229–262.
  • Dedecker et al. (2007) Dedecker, J., Doukhan, P., Lang, G., León R., J. R., Louhichi, S. and Prieur, C. (2007). Weak Dependence: With Examples and Applications. Lecture Notes in Statistics 190. Springer, New York.
  • Denker (1989) Denker, M. (1989). The central limit theorem for dynamical systems. In Dynamical Systems and Ergodic Theory (Warsaw, 1986). Banach Center Publ. 23 33–62. PWN, Warsaw.
  • Denker and Keller (1986) Denker, M. and Keller, G. (1986). Rigorous statistical procedures for data from dynamical systems. J. Stat. Phys. 44 67–93.
  • Denker and Philipp (1984) Denker, M. and Philipp, W. (1984). Approximation by Brownian motion for Gibbs measures and flows under a function. Ergodic Theory Dynam. Systems 4 541–552.
  • Diaconis and Freedman (1999) Diaconis, P. and Freedman, D. (1999). Iterated random functions. SIAM Rev. 41 45–76.
  • Donsker (1952) Donsker, M. D. (1952). Justification and extension of Doob’s heuristic approach to the Komogorov–Smirnov theorems. Ann. Math. Statistics 23 277–281.
  • Doob (1949) Doob, J. L. (1949). Heuristic approach to the Kolmogorov–Smirnov theorems. Ann. Math. Statistics 20 393–403.
  • Eberlein and Taqqu (1986) Eberlein, E. and Taqqu, M. S., eds. (1986). Dependence in Probability and Statistics: A Survey of Recent Results. Progress in Probability and Statistics 11. Birkhäuser, Boston.
  • Erdös and Kac (1946) Erdös, P. and Kac, M. (1946). On certain limit theorems of the theory of probability. Bull. Amer. Math. Soc. (N.S.) 52 292–302.
  • Eubank and Speckman (1993) Eubank, R. L. and Speckman, P. L. (1993). Confidence bands in nonparametric regression. J. Amer. Statist. Assoc. 88 1287–1301.
  • Götze and Zaitsev (2009) Götze, F. and Zaitsev, A. Y. (2009). Bounds for the rate of strong approximation in the multidimensional invariance principle. Theory Probab. Appl. 53 59–80.
  • Hannan (1979) Hannan, E. J. (1979). The central limit theorem for time series regression. Stochastic Process. Appl. 9 281–289.
  • Hofbauer and Keller (1982) Hofbauer, F. and Keller, G. (1982). Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Z. 180 119–140.
  • Ibragimov and Linnik (1971) Ibragimov, I. A. and Linnik, Y. V. (1971). Independent and Stationary Sequences of Random Variables. Wolters–Noordhoff Publishing, Groningen.
  • Komlós, Major and Tusnády (1975) Komlós, J., Major, P. and Tusnády, G. (1975). An approximation of partial sums of independent $\mathrm{RV}$’s and the sample $\mathrm{DF}$. I. Z. Wahrsch. Verw. Gebiete 32 111–131.
  • Komlós, Major and Tusnády (1976) Komlós, J., Major, P. and Tusnády, G. (1976). An approximation of partial sums of independent RV’s, and the sample DF. II. Z. Wahrsch. Verw. Gebiete 34 33–58.
  • Liu, Han and Wu (2013) Liu, W., Han, X. and Wu, W. B. (2013). Probability and moment inequalities under dependence. Statist. Sinica 23 1257–1272.
  • Liu and Lin (2009) Liu, W. and Lin, Z. (2009). Strong approximation for a class of stationary processes. Stochastic Process. Appl. 119 249–280.
  • Merlevède and Rio (2012) Merlevède, F. and Rio, E. (2012). Strong approximation of partial sums under dependence conditions with application to dynamical systems. Stochastic Process. Appl. 122 386–417.
  • Ornstein (1974) Ornstein, D. S. (1974). Ergodic Theory, Randomness, and Dynamical Systems. Yale Univ. Press, New Haven, CT.
  • Priestley (1988) Priestley, M. B. (1988). Nonlinear and Nonstationary Time Series Analysis. Academic Press, London.
  • Prohorov (1956) Prohorov, Y. V. (1956). Convergence of random processes and limit theorems in probability theory. Theory Probab. Appl. 1 157–214.
  • Rugh (1981) Rugh, W. J. (1981). Nonlinear System Theory: The Volterra–Wiener Approach. Johns Hopkins Univ. Press, Baltimore, MD.
  • Sakhanenko (1991) Sakhanenko, A. I. (1991). On the accuracy of normal approximation in the invariance principle. Siberian Math. J. 47 1113–1127.
  • Sakhanenko (2006) Sakhanenko, A. I. (2006). Estimates in the invariance principle in terms of truncated power moments. Sibirsk. Mat. Zh. 47 1355–1371.
  • Schetzen (1980) Schetzen, M. (1980). The Volterra and Wiener Theories of Nonlinear Systems. Wiley, New York.
  • Shao and Lu (1987) Shao, Q. M. and Lu, C. R. (1987). Strong approximations for partial sums of weakly dependent random variables. Sci. Sinica Ser. A 30 575–587.
  • Shao and Wu (2007) Shao, X. and Wu, W. B. (2007). Asymptotic spectral theory for nonlinear time series. Ann. Statist. 35 1773–1801.
  • Shields (1973) Shields, P. (1973). The Theory of Bernoulli Shifts. Univ. Chicago Press, Chicago, Il.
  • Shorack and Wellner (1986) Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics. Wiley, New York.
  • Strassen (1964) Strassen, V. (1964). An invariance principle for the law of the iterated logarithm. Z. Wahrsch. Verw. Gebiete 3 211–226.
  • Tong (1990) Tong, H. (1990). Nonlinear Time Series: A Dynamical System Approach. Oxford Statistical Science Series 6. Oxford Univ. Press, New York.
  • Volný (1993) Volný, D. (1993). Approximating martingales and the central limit theorem for strictly stationary processes. Stochastic Process. Appl. 44 41–74.
  • Volný (1999) Volný, D. (1999). Invariance principles and Gaussian approximation for strictly stationary processes. Trans. Amer. Math. Soc. 351 3351–3371.
  • Weiss (1975) Weiss, B. (1975). The structure of Bernoulli systems. In Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974), Vol. 2 321–325. Canad. Math. Congress, Montreal.
  • Wiener (1958) Wiener, N. (1958). Nonlinear Problems in Random Theory. Technology Press of The Massachusetts Institute of Technology and Wiley, New York.
  • Woodroofe (1992) Woodroofe, M. (1992). A central limit theorem for functions of a Markov chain with applications to shifts. Stochastic Process. Appl. 41 33–44.
  • Wu (2005) Wu, W. B. (2005). Nonlinear system theory: Another look at dependence. Proc. Natl. Acad. Sci. USA 102 14150–14154.
  • Wu (2007) Wu, W. B. (2007). Strong invariance principles for dependent random variables. Ann. Probab. 35 2294–2320.
  • Wu (2011) Wu, W. B. (2011). Asymptotic theory for stationary processes. Stat. Interface 4 207–226.
  • Wu, Chiang and Hoover (1998) Wu, C. O., Chiang, C.-T. and Hoover, D. R. (1998). Asymptotic confidence regions for kernel smoothing of a varying-coefficient model with longitudinal data. J. Amer. Statist. Assoc. 93 1388–1402.
  • Wu and Shao (2004) Wu, W. B. and Shao, X. (2004). Limit theorems for iterated random functions. J. Appl. Probab. 41 425–436.
  • Wu and Zhao (2007) Wu, W. B. and Zhao, Z. (2007). Inference of trends in time series. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 391–410.