The Annals of Probability

Limiting distribution of maximal crossing and nesting of Poissonized random matchings

Jinho Baik and Robert Jenkins

Full-text: Open access


The notion of $r$-crossing and $r$-nesting of a complete matching was introduced and a symmetry property was proved by Chen et al. [Trans. Amer. Math. Soc. 359 (2007) 1555–1575]. We consider random matchings of large size and study their maximal crossing and their maximal nesting. It is known that the marginal distribution of each of them converges to the GOE Tracy–Widom distribution. We show that the maximal crossing and the maximal nesting becomes independent asymptotically, and we evaluate the joint distribution for the Poissonized random matchings explicitly to the first correction term. This leads to an evaluation of the asymptotic of the covariance. Furthermore, we compute the explicit second correction term in the distribution function of two objects: (a) the length of the longest increasing subsequence of Poissonized random permutation and (b) the maximal crossing, and hence also the maximal nesting, of Poissonized random matching.

Article information

Ann. Probab., Volume 41, Number 6 (2013), 4359-4406.

First available in Project Euclid: 20 November 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60B10: Convergence of probability measures 60F99: None of the above, but in this section
Secondary: 33D45: Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.) 35Q15: Riemann-Hilbert problems [See also 30E25, 31A25, 31B20]

Random matchings crossing nesting orthogonal polynomials Riemann–Hilbert problems random matrices


Baik, Jinho; Jenkins, Robert. Limiting distribution of maximal crossing and nesting of Poissonized random matchings. Ann. Probab. 41 (2013), no. 6, 4359--4406. doi:10.1214/12-AOP781.

Export citation


  • [1] Adler, M., Ferrari, P. L. and van Moerbeke, P. (2010). Non-intersecting random walks in the neighborhood of a symmetric tacnode. Available at arXiv:1007.1163.
  • [2] Baik, J., Borodin, A., Deift, P. and Suidan, T. (2006). A model for the bus system in Cuernavaca (Mexico). J. Phys. A 39 8965–8975.
  • [3] Baik, J., Buckingham, R. and DiFranco, J. (2008). Asymptotics of Tracy–Widom distributions and the total integral of a Painlevé II function. Comm. Math. Phys. 280 463–497.
  • [4] Baik, J., Deift, P. and Johansson, K. (1999). On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12 1119–1178.
  • [5] Baik, J., Deift, P. and Rains, E. (2001). A Fredholm determinant identity and the convergence of moments for random Young tableaux. Comm. Math. Phys. 223 627–672.
  • [6] Baik, J., Kriecherbauer, T., McLaughlin, K. T. R. and Miller, P. D. (2007). Discrete Orthogonal Polynomials: Asymptotics and Applications. Annals of Mathematics Studies 164. Princeton Univ. Press, Princeton, NJ.
  • [7] Baik, J. and Liu, Z. (2013). Discrete Topelitz/Hankel determinants and the width of non-intersecting processes. Available at arXiv:1212.4467.
  • [8] Baik, J. and Rains, E. M. (2001). Algebraic aspects of increasing subsequences. Duke Math. J. 109 1–65.
  • [9] Baik, J. and Rains, E. M. (2001). The asymptotics of monotone subsequences of involutions. Duke Math. J. 109 205–281.
  • [10] Basor, E. L. and Ehrhardt, T. (2009). Determinant computations for some classes of Toeplitz–Hankel matrices. Oper. Matrices 3 167–186.
  • [11] Bornemann, F. (2010). Asymptotic independence of the extreme eigenvalues of Gaussian unitary ensemble. J. Math. Phys. 51 023514, 8.
  • [12] Bornemann, F. (2010). On the numerical evaluation of distributions in random matrix theory: A review. Markov Process. Related Fields 16 803–866.
  • [13] Böttcher, A. and Karlovich, Y. I. (1997). Carleson Curves, Muckenhoupt Weights, and Toeplitz Operators. Progress in Mathematics 154. Birkhäuser, Basel.
  • [14] Buckingham, R. J. and Miller, P. D. (2012). The sine-Gordon equation in the semiclassical limit: Critical behavior near a separatrix. J. Anal. Math. 118 397–492.
  • [15] Chen, W. Y. C., Deng, E. Y. P., Du, R. R. X., Stanley, R. P. and Yan, C. H. (2007). Crossings and nestings of matchings and partitions. Trans. Amer. Math. Soc. 359 1555–1575.
  • [16] Chester, C., Friedman, B. and Ursell, F. (1957). An extension of the method of steepest descents. Math. Proc. Cambridge Philos. Soc. 53 599–611.
  • [17] Choup, L. N. (2006). Edgeworth expansion of the largest eigenvalue distribution function of GUE and LUE. Int. Math. Res. Not. IMRN Art. ID 61049, 32.
  • [18] Choup, L. N. (2008). Edgeworth expansion of the largest eigenvalue distribution function of Gaussian unitary ensemble revisited. J. Math. Phys. 49 033508, 16.
  • [19] Claeys, T. and Kuijlaars, A. B. J. (2006). Universality of the double scaling limit in random matrix models. Comm. Pure Appl. Math. 59 1573–1603.
  • [20] Corwin, I., Quastel, J. and Remenik, D. (2013). Continuum statistics of the Airy2 process. Comm. Math. Phys. 317 347–362.
  • [21] Deift, P., Kriecherbauer, T., McLaughlin, K. T. R., Venakides, S. and Zhou, X. (1999). Strong asymptotics of orthogonal polynomials with respect to exponential weights. Comm. Pure Appl. Math. 52 1491–1552.
  • [22] Deift, P., Kriecherbauer, T., McLaughlin, K. T. R., Venakides, S. and Zhou, X. (1999). Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math. 52 1335–1425.
  • [23] Deift, P. A. and Zhou, X. (1995). Asymptotics for the Painlevé II equation. Comm. Pure Appl. Math. 48 277–337.
  • [24] El Karoui, N. (2006). A rate of convergence result for the largest eigenvalue of complex white Wishart matrices. Ann. Probab. 34 2077–2117.
  • [25] Ferrari, P. L. and Frings, R. (2011). Finite time corrections in KPZ growth models. J. Stat. Phys. 144 1123–1150.
  • [26] Flaschka, H. and Newell, A. C. (1980). Monodromy- and spectrum-preserving deformations. I. Comm. Math. Phys. 76 65–116.
  • [27] Fokas, A. S., Its, A. R. and Kitaev, A. V. (1992). The isomonodromy approach to matrix models in $2$D quantum gravity. Comm. Math. Phys. 147 395–430.
  • [28] Friedman, B. (1959). Stationary phase with neighboring critical points. J. Soc. Indust. Appl. Math. 7 280–289.
  • [29] Gessel, I. M. (1990). Symmetric functions and P-recursiveness. J. Combin. Theory Ser. A 53 257–285.
  • [30] Golinskiĭ, L. B. (2006). Schur flows and orthogonal polynomials on the unit circle. Mat. Sb. 197 41–62.
  • [31] Grabiner, D. J. (1999). Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Ann. Inst. Henri Poincaré Probab. Stat. 35 177–204.
  • [32] Hastings, S. P. and McLeod, J. B. (1980). A boundary value problem associated with the second Painlevé transcendent and the Korteweg–de Vries equation. Arch. Ration. Mech. Anal. 73 31–51.
  • [33] Johansson, K. (1998). The longest increasing subsequence in a random permutation and a unitary random matrix model. Math. Res. Lett. 5 63–82.
  • [34] Johansson, K. (2002). Non-intersecting paths, random tilings and random matrices. Probab. Theory Related Fields 123 225–280.
  • [35] Johansson, K. (2003). Discrete polynuclear growth and determinantal processes. Comm. Math. Phys. 242 277–329.
  • [36] Johansson, K. (2005). The arctic circle boundary and the Airy process. Ann. Probab. 33 1–30.
  • [37] Johnstone, I. M. (2008). Multivariate analysis and Jacobi ensembles: Largest eigenvalue, Tracy–Widom limits and rates of convergence. Ann. Statist. 36 2638–2716.
  • [38] Johnstone, I. M. and Ma, Z. (2011). Fast approach to the Tracy–Widom law at the edge of GOE and GUE. Available at arXiv:1110.0108.
  • [39] Kamvissis, S., McLaughlin, K. D. T. R. and Miller, P. D. (2003). Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation. Annals of Mathematics Studies 154. Princeton Univ. Press, Princeton, NJ.
  • [40] Karlin, S. and McGregor, J. (1959). Coincidence probabilities. Pacific J. Math. 9 1141–1164.
  • [41] König, W., O’Connell, N. and Roch, S. (2002). Non-colliding random walks, tandem queues, and discrete orthogonal polynomial ensembles. Electron. J. Probab. 7 24 pp. (electronic).
  • [42] Krattenthaler, C. (2006). Growth diagrams, and increasing and decreasing chains in fillings of Ferrers shapes. Adv. in Appl. Math. 37 404–431.
  • [43] Ma, Z. (2012). Accuracy of the Tracy–Widom limits for the extreme eigenvalues in white Wishart matrices. Bernoulli 18 322–359.
  • [44] Moreno Flores, G., Quastel, J. and Remenik, D. (2013). Endpoint distribution of directed polymers in $1+1$ dimensions. Comm. Math. Phys. 317 363–380.
  • [45] Nenciu, I. (2005). Lax pairs for the Ablowitz–Ladik system via orthogonal polynomials on the unit circle. Int. Math. Res. Not. IMRN 11 647–686.
  • [46] Rains, E. M. (1998). Increasing subsequences and the classical groups. Electron. J. Combin. 5 Research Paper 12, 9 pp. (electronic).
  • [47] Shinault, G. and Tracy, C. A. (2011). Asymptotics for the covariance of the $\mathrm{Airy}_{2}$ process. J. Stat. Phys. 143 60–71.
  • [48] Stanley, R. P. (2007). Increasing and decreasing subsequences and their variants. In International Congress of Mathematicians. Vol. I 545–579. Eur. Math. Soc., Zürich.
  • [49] Szegő, G. (1975). Orthogonal Polynomials, 4th ed. Amer. Math. Soc., Providence, RI.
  • [50] Tracy, C. A. and Widom, H. (1996). On orthogonal and symplectic matrix ensembles. Comm. Math. Phys. 177 727–754.