The Annals of Probability

Ergodicity of Poisson products and applications

Tom Meyerovitch

Full-text: Open access


In this paper we study the Poisson process over a $\sigma$-finite measure-space equipped with a measure preserving transformation or a group of measure preserving transformations. For a measure-preserving transformation $T$ acting on a $\sigma$-finite measure-space $X$, the Poisson suspension of $T$ is the associated probability preserving transformation $T_{*}$ which acts on realization of the Poisson process over $X$. We prove ergodicity of the Poisson-product $T\times T_{*}$ under the assumption that $T$ is ergodic and conservative. We then show, assuming ergodicity of $T\times T_{*}$, that it is impossible to deterministically perform natural equivariant operations: thinning, allocation or matching. In contrast, there are well-known results in the literature demonstrating the existence of isometry equivariant thinning, matching and allocation of homogenous Poisson processes on $\mathbb{R}^{d}$. We also prove ergodicity of the “first return of left-most transformation” associated with a measure preserving transformation on $\mathbb{R}_{+}$, and discuss ergodicity of the Poisson-product of measure preserving group actions, and related spectral properties.

Article information

Ann. Probab., Volume 41, Number 5 (2013), 3181-3200.

First available in Project Euclid: 12 September 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60G55: Point processes 37A05: Measure-preserving transformations

Poisson suspension equivariant thinning equivariant allocation infinite measure preserving transformations conservative transformations


Meyerovitch, Tom. Ergodicity of Poisson products and applications. Ann. Probab. 41 (2013), no. 5, 3181--3200. doi:10.1214/12-AOP824.

Export citation


  • [1] Aaronson, J. (1997). An Introduction to Infinite Ergodic Theory. Mathematical Surveys and Monographs 50. Amer. Math. Soc., Providence, RI.
  • [2] Aaronson, J. and Nadkarni, M. (1987). $L_{\infty}$ eigenvalues and $L_{2}$ spectra of nonsingular transformations. Proc. Lond. Math. Soc. (3) 55 538–570.
  • [3] Adler, R. L. and Weiss, B. (1973). The ergodic infinite measure preserving transformation of Boole. Israel J. Math. 16 263–278.
  • [4] Ball, K. (2005). Poisson thinning by monotone factors. Electron. Commun. Probab. 10 60–69 (electronic).
  • [5] Chatterjee, S., Peled, R., Peres, Y. and Romik, D. (2010). Gravitational allocation to Poisson points. Ann. of Math. (2) 172 617–671.
  • [6] Evans, S. N. (2010). A zero-one law for linear transformations of Lévy noise. In Algebraic Methods in Statistics and Probability II. Contemp. Math. 516 189–197. Amer. Math. Soc., Providence, RI.
  • [7] Gurel-Gurevich, O. and Peled, R. (2013). Poisson thickening. Israel J. Math. To appear. Available at arXiv:0911.5377.
  • [8] Hahn, P. (1979). Reconstruction of a factor from measures on Takesaki’s unitary equivalence relation. J. Funct. Anal. 31 263–271.
  • [9] Hoffman, C., Holroyd, A. E. and Peres, Y. (2006). A stable marriage of Poisson and Lebesgue. Ann. Probab. 34 1241–1272.
  • [10] Holroyd, A. E. (2011). Geometric properties of Poisson matchings. Probab. Theory Related Fields 150 511–527.
  • [11] Holroyd, A. E., Lyons, R. and Soo, T. (2011). Poisson splitting by factors. Ann. Probab. 39 1938–1982.
  • [12] Holroyd, A. E., Pemantle, R., Peres, Y. and Schramm, O. (2009). Poisson matching. Ann. Inst. Henri Poincaré Probab. Stat. 45 266–287.
  • [13] Kingman, J. F. C. (1993). Poisson Processes. Oxford Studies in Probability 3. The Clarendon Press Oxford Univ. Press, New York.
  • [14] Kingman, J. F. C. (2006). Poisson processes revisited. Probab. Math. Statist. 26 77–95.
  • [15] Krikun, M. (2007). Connected allocation to Poisson points in $\mathbb{R}^{2}$. Electron. Commun. Probab. 12 140–145.
  • [16] Nadkarni, M. G. (2011). Spectral Theory of Dynamical Systems. Texts and Readings in Mathematics 15. Hindustan Book Agency, New Delhi.
  • [17] Roy, E. (2009). Poisson suspensions and infinite ergodic theory. Ergodic Theory Dynam. Systems 29 667–683.
  • [18] Roy, E. (2010). Poisson–Pinsker factor and infinite measure preserving group actions. Proc. Amer. Math. Soc. 138 2087–2094.
  • [19] Schmidt, K. (1982). Spectra of ergodic group actions. Israel J. Math. 41 151–153.