The Annals of Probability

Random walks in dynamic random environments: A transference principle

Frank Redig and Florian Völlering

Full-text: Open access

Abstract

We study a general class of random walks driven by a uniquely ergodic Markovian environment. Under a coupling condition on the environment we obtain strong ergodicity properties for the environment as seen from the position of the walker, that is, the environment process. We can transfer the rate of mixing in time of the environment to the rate of mixing of the environment process with a loss of at most polynomial order. Therefore the method is applicable to environments with sufficiently fast polynomial mixing. We obtain unique ergodicity of the environment process. Moreover, the unique invariant measure of the environment process depends continuously on the jump rates of the walker.

As a consequence we obtain the law of large numbers and a central limit theorem with nondegenerate variance for the position of the walk.

Article information

Source
Ann. Probab., Volume 41, Number 5 (2013), 3157-3180.

Dates
First available in Project Euclid: 12 September 2013

Permanent link to this document
https://projecteuclid.org/euclid.aop/1378991835

Digital Object Identifier
doi:10.1214/12-AOP819

Mathematical Reviews number (MathSciNet)
MR3127878

Zentralblatt MATH identifier
1277.82051

Subjects
Primary: 82C41: Dynamics of random walks, random surfaces, lattice animals, etc. [See also 60G50]
Secondary: 60F17: Functional limit theorems; invariance principles

Keywords
Environment process coupling random walk transference principle central limit theorem

Citation

Redig, Frank; Völlering, Florian. Random walks in dynamic random environments: A transference principle. Ann. Probab. 41 (2013), no. 5, 3157--3180. doi:10.1214/12-AOP819. https://projecteuclid.org/euclid.aop/1378991835


Export citation

References

  • Ambaye, H. and Kehr, K. W. (1999). Toy model for molecular motors. Physica A: Statistical Mechanics and Its Applications 267 111–123.
  • Avena, L., den Hollander, F. and Redig, F. (2011). Law of large numbers for a class of random walks in dynamic random environments. Electron. J. Probab. 16 587–617.
  • Bandyopadhyay, A. and Zeitouni, O. (2006). Random walk in dynamic Markovian random environment. ALEA Lat. Am. J. Probab. Math. Stat. 1 205–224.
  • Boldrighini, C., Ignatyuk, I. A., Malyshev, V. A. and Pellegrinotti, A. (1992). Random walk in dynamic environment with mutual influence. Stochastic Process. Appl. 41 157–177.
  • Boldrigini, K., Minlos, R. A. and Pellegrinotti, A. (2007). Random walks in a random (fluctuating) environment. Russian Math. Reviews 62 663–712.
  • Bricmont, J. and Kupiainen, A. (2009). Random walks in space time mixing environments. J. Stat. Phys. 134 979–1004.
  • Dolgopyat, D., Keller, G. and Liverani, C. (2008). Random walk in Markovian environment. Ann. Probab. 36 1676–1710.
  • Dolgopyat, D. and Liverani, C. (2008). Random walk in deterministically changing environment. ALEA Lat. Am. J. Probab. Math. Stat. 4 89–116.
  • Dolgopyat, D. and Liverani, C. (2009). Non-perturbative approach to random walk in Markovian environment. Electron. Commun. Probab. 14 245–251.
  • Donato, P. and Piatnitski, A. (2005). Averaging of nonstationary parabolic operators with large lower order terms. In Multi Scale Problems and Asymptotic Analysis. GAKUTO International Series. Mathematical Sciences and Applications 24 153–165. Gakkōtosho, Tokyo.
  • Jarzynski, C. and Mazonka, O. (1999). Feynman’s ratchet and pawl: An exactly solvable model. Phys. Rev. E 59 6448.
  • Joseph, M. and Rassoul-Agha, F. (2011). Almost sure invariance principle for continuous-space random walk in dynamic random environment. ALEA Lat. Am. J. Probab. Math. Stat. 8 43–57.
  • Jülicher, F., Ajdari, A. and Prost, J. (1997). Modeling molecular motors. Rev. Modern Phys. 69 1269.
  • Liggett, T. M. (1985). Interacting Particle Systems. Springer, Berlin.
  • Magnasco, M. O. (1994). Molecular combustion motors. Phys. Rev. Lett. 72 2656–2659.
  • Rassoul-Agha, F. (2003). The point of view of the particle on the law of large numbers for random walks in a mixing random environment. Ann. Probab. 31 1441–1463.
  • Rassoul-Agha, F., Seppäläinen, T. and Yilmaz, A. (2013). Quenched free energy and large deviations for random walks in random potentials. Comm. Pure Appl. Math. 66 202–244.