The Annals of Probability

Large deviations for the current and tagged particle in 1D nearest-neighbor symmetric simple exclusion

Sunder Sethuraman and S. R. S. Varadhan

Full-text: Open access

Abstract

Laws of large numbers, starting from certain nonequilibrium measures, have been shown for the integrated current across a bond, and a tagged particle in one-dimensional symmetric nearest-neighbor simple exclusion [Ann. Inst. Henri Poincaré Probab. Stat. 42 (2006) 567–577]. In this article, we prove corresponding large deviation principles and evaluate the rate functions, showing different growth behaviors near and far from their zeroes which connect with results in [J. Stat. Phys. 136 (2009) 1–15].

Article information

Source
Ann. Probab., Volume 41, Number 3A (2013), 1461-1512.

Dates
First available in Project Euclid: 29 April 2013

Permanent link to this document
https://projecteuclid.org/euclid.aop/1367241504

Digital Object Identifier
doi:10.1214/11-AOP703

Mathematical Reviews number (MathSciNet)
MR3098682

Zentralblatt MATH identifier
1287.60117

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
Symmetric exclusion current tagged particle large deviations one dimensional

Citation

Sethuraman, Sunder; Varadhan, S. R. S. Large deviations for the current and tagged particle in 1D nearest-neighbor symmetric simple exclusion. Ann. Probab. 41 (2013), no. 3A, 1461--1512. doi:10.1214/11-AOP703. https://projecteuclid.org/euclid.aop/1367241504


Export citation

References

  • [1] Arratia, R. (1983). The motion of a tagged particle in the simple symmetric exclusion system on $\mathbf{Z}$. Ann. Probab. 11 362–373.
  • [2] Benois, O., Kipnis, C. and Landim, C. (1995). Large deviations from the hydrodynamical limit of mean zero asymmetric zero range processes. Stochastic Process. Appl. 55 65–89.
  • [3] Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G. and Landim, C. (2006). Large deviations of the empirical current in interacting particle systems. Teor. Veroyatn. Primen. 51 144–170; translation in Theory Probab. Appl. 51 2–27.
  • [4] Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G. and Landim, C. (2006). Large deviation approach to non equilibrium processes in stochastic lattice gases. Bull. Braz. Math. Soc. (N.S.) 37 611–643.
  • [5] Bertini, L., Landim, C. and Mourragui, M. (2009). Dynamical large deviations for the boundary driven weakly asymmetric exclusion process. Ann. Probab. 37 2357–2403.
  • [6] Borcea, J., Brändén, P. and Liggett, T. M. (2009). Negative dependence and the geometry of polynomials. J. Amer. Math. Soc. 22 521–567.
  • [7] Dacorogna, B. (2009). Introduction to the Calculus of Variations, 2nd ed. Imperial College Press, London.
  • [8] De Masi, A. and Ferrari, P. A. (2002). Flux fluctuations in the one dimensional nearest neighbors symmetric simple exclusion process. J. Stat. Phys. 107 677–683.
  • [9] Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications, 2nd ed. Applications of Mathematics (New York) 38. Springer, New York.
  • [10] Derrida, B. and Gerschenfeld, A. (2009). Current fluctuations of the one dimensional symmetric simple exclusion process with step initial condition. J. Stat. Phys. 136 1–15.
  • [11] Derrida, B. and Gerschenfeld, A. (2009). Current fluctuations in one dimensional diffusive systems with a step initial density profile. J. Stat. Phys. 137 978–1000.
  • [12] Farfan, J., Landim, C. and Mourragui, M. (2011). Hydrostatics and dynamical large deviations of boundary driven gradient symmetric exclusion processes. Stochastic Process. Appl. 121 725–758.
  • [13] Ferrari, P. L. and Spohn, H. (2006). Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process. Comm. Math. Phys. 265 1–44.
  • [14] Grigorescu, I. (2007). Large deviations for a catalytic Fleming–Viot branching system. Comm. Pure Appl. Math. 60 1056–1080.
  • [15] Hurtado, P. I. and Garrido, P. L. (2010). Large fluctuations of the macroscopic current in diffusive systems: A numerical test of the additivity principle. Phys. Rev. E 81 041102.
  • [16] Jara, M. D. and Landim, C. (2006). Nonequilibrium central limit theorem for a tagged particle in symmetric simple exclusion. Ann. Inst. Henri Poincaré Probab. Stat. 42 567–577.
  • [17] Kipnis, C. and Landim, C. (1999). Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 320. Springer, Berlin.
  • [18] Kipnis, C., Olla, S. and Varadhan, S. R. S. (1989). Hydrodynamics and large deviation for simple exclusion processes. Comm. Pure Appl. Math. 42 115–137.
  • [19] Kipnis, C. and Varadhan, S. R. S. (1986). Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104 1–19.
  • [20] Landim, C. (1992). Occupation time large deviations for the symmetric simple exclusion process. Ann. Probab. 20 206–231.
  • [21] Landim, C., Olla, S. and Varadhan, S. R. S. (2001). Symmetric simple exclusion process: Regularity of the self-diffusion coefficient. Comm. Math. Phys. 224 307–321.
  • [22] Landim, C. and Yau, H.-T. (1995). Large deviations of interacting particle systems in infinite volume. Comm. Pure Appl. Math. 48 339–379.
  • [23] Liggett, T. M. (1985). Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 276. Springer, New York.
  • [24] Liggett, T. M. (2009). Distributional limits for the symmetric exclusion process. Stochastic Process. Appl. 119 1–15.
  • [25] Oelschläger, K. (1985). A law of large numbers for moderately interacting diffusion processes. Z. Wahrsch. Verw. Gebiete 69 279–322.
  • [26] Peligrad, M. and Sethuraman, S. (2008). On fractional Brownian motion limits in one dimensional nearest-neighbor symmetric simple exclusion. ALEA Lat. Am. J. Probab. Math. Stat. 4 245–255.
  • [27] Petrov, V. V. (1975). Sums of Independent Random Variables. Ergebnisse der Mathematik und ihrer Grenzgebiete 82. Springer, New York.
  • [28] Prähofer, M. and Spohn, H. (2002). Current fluctuations for the totally asymmetric simple exclusion process. In In and Out of Equilibrium (Mambucaba, 2000). Progress in Probability 51 185–204. Birkhäuser, Boston, MA.
  • [29] Quastel, J. (1995). Large deviations from a hydrodynamic scaling limit for a nongradient system. Ann. Probab. 23 724–742.
  • [30] Quastel, J., Rezakhanlou, F. and Varadhan, S. R. S. (1999). Large deviations for the symmetric simple exclusion process in dimensions $d\geq3$. Probab. Theory Related Fields 113 1–84.
  • [31] Rezakhanlou, F. (1994). Propagation of chaos for symmetric simple exclusions. Comm. Pure Appl. Math. 47 943–957.
  • [32] Rost, H. and Vares, M. E. (1985). Hydrodynamics of a one-dimensional nearest neighbor model. Contemp. Math. 41 329–342.
  • [33] Sasamoto, T. (2008). Exact results for the 1D asymmetric exclusion process and KPZ fluctuations. Eur. Phys. J. B 64 373–377.
  • [34] Seppäläinen, T. (2008). Translation invariant exclusion processes. Available at http://www.math.wisc.edu/~seppalai/excl-book/etusivu.html.
  • [35] Seppäläinen, T. (1998). Coupling the totally asymmetric simple exclusion process with a moving interface. Markov Process. Related Fields 4 593–628.
  • [36] Spitzer, F. (1970). Interaction of Markov processes. Adv. Math. 5 246–290.
  • [37] Spohn, H. (1991). Large Scale Dynamics of Interacting Particles. Texts and Monographs in Physics. Springer, Berlin.
  • [38] Vandenberg-Rodes, A. (2010). A limit theorem for particle current in the symmetric exclusion process. Electron. Commun. Probab. 15 240–252.