The Annals of Probability
- Ann. Probab.
- Volume 41, Number 3A (2013), 1218-1242.
Sharp metastability threshold for an anisotropic bootstrap percolation model
H. Duminil-Copin and A. C. D. Van Enter
Full-text: Open access
Abstract
Bootstrap percolation models have been extensively studied during the two past decades. In this article, we study the following “anisotropic” bootstrap percolation model: the neighborhood of a point $(m,n)$ is the set
\[\{(m+2,n),(m+1,n),(m,n+1),(m-1,n),(m-2,n),(m,n-1)\}.\]
At time 0, sites are occupied with probability $p$. At each time step, sites that are occupied remain occupied, while sites that are not occupied become occupied if and only if three of more sites in their neighborhood are occupied. We prove that it exhibits a sharp metastability threshold. This is the first mathematical proof of a sharp threshold for an anisotropic bootstrap percolation model.
Article information
Source
Ann. Probab., Volume 41, Number 3A (2013), 1218-1242.
Dates
First available in Project Euclid: 29 April 2013
Permanent link to this document
https://projecteuclid.org/euclid.aop/1367241499
Digital Object Identifier
doi:10.1214/11-AOP722
Mathematical Reviews number (MathSciNet)
MR3098677
Zentralblatt MATH identifier
1356.60166
Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 83B43 83C43
Keywords
Bootstrap percolation sharp threshold anisotropy metastability
Citation
Duminil-Copin, H.; Van Enter, A. C. D. Sharp metastability threshold for an anisotropic bootstrap percolation model. Ann. Probab. 41 (2013), no. 3A, 1218--1242. doi:10.1214/11-AOP722. https://projecteuclid.org/euclid.aop/1367241499
References
- [1] Aizenman, M. and Lebowitz, J. L. (1988). Metastability effects in bootstrap percolation. J. Phys. A 21 3801–3813.Mathematical Reviews (MathSciNet): MR968311
Zentralblatt MATH: 0656.60106
Digital Object Identifier: doi:10.1088/0305-4470/21/19/017 - [2] Amini, H. (2010). Bootstrap percolation in living neural networks. J. Stat. Phys. 141 459–475.Mathematical Reviews (MathSciNet): MR2728841
Zentralblatt MATH: 1207.82037
Digital Object Identifier: doi:10.1007/s10955-010-0056-z - [3] Balogh, J., Bollobás, B., Duminil-Copin, H. and Morris, R. (2012). The sharp threshold for bootstrap percolation in all dimensions. Trans. Amer. Math. Soc. 364 2667–2701.Mathematical Reviews (MathSciNet): MR2888224
Zentralblatt MATH: 1238.60108
Digital Object Identifier: doi:10.1090/S0002-9947-2011-05552-2 - [4] Balogh, J., Bollobás, B. and Morris, R. (2009). Bootstrap percolation in three dimensions. Ann. Probab. 37 1329–1380.Mathematical Reviews (MathSciNet): MR2546747
Zentralblatt MATH: 1187.60082
Digital Object Identifier: doi:10.1214/08-AOP433
Project Euclid: euclid.aop/1248182140 - [5] Balogh, J., Bollobás, B. and Morris, R. (2009). Majority bootstrap percolation on the hypercube. Combin. Probab. Comput. 18 17–51.Mathematical Reviews (MathSciNet): MR2497373
Zentralblatt MATH: 1198.60041
Digital Object Identifier: doi:10.1017/S0963548308009322 - [6] Balogh, J., Bollobás, B. and Morris, R. (2010). Bootstrap percolation in high dimensions. Combin. Probab. Comput. 19 643–692.Mathematical Reviews (MathSciNet): MR2726074
Zentralblatt MATH: 06144661
Digital Object Identifier: doi:10.1017/S0963548310000271 - [7] Cerf, R. and Cirillo, E. N. M. (1999). Finite size scaling in three-dimensional bootstrap percolation. Ann. Probab. 27 1837–1850.Mathematical Reviews (MathSciNet): MR1742890
Zentralblatt MATH: 0960.60088
Digital Object Identifier: doi:10.1214/aop/1022677550
Project Euclid: euclid.aop/1022874817 - [8] Cerf, R. and Manzo, F. (2002). The threshold regime of finite volume bootstrap percolation. Stochastic Process. Appl. 101 69–82.Mathematical Reviews (MathSciNet): MR1921442
Zentralblatt MATH: 1075.82010
Digital Object Identifier: doi:10.1016/S0304-4149(02)00124-2 - [9] Chalupa, J., Leath, P. L. and Reich, G. R. (1979). Bootstrap percolation on a Bethe lattice. J. Phys. C 12 31–35.
- [10] de Gregorio, P., Dawson, K. A. and Lawlor, A. (2009). Bootstrap percolation. In Springer Encyclopedia of Complexity and Systems Science 2 608–626. Springer, Berlin.
- [11] Duarte, J. A. M. S. (1989). Simulation of a cellular automaton with an oriented bootstrap rule. Phys. A 157 1075–1079.
- [12] Duminil-Copin, H. and Holroyd, A. (2012). Finite volume bootstrap percolation with threshold dynamics on Z2 I: Balanced case. Unpublished manuscript.
- [13] Fey, A., Levine, L. and Peres, Y. (2010). Growth rates and explosions in sandpiles. J. Stat. Phys. 138 143–159.Mathematical Reviews (MathSciNet): MR2594895
Zentralblatt MATH: 1186.82043
Digital Object Identifier: doi:10.1007/s10955-009-9899-6 - [14] Garrahan, J. P., Sollich, P. and Toninelli, C. (2011). Kinetically constrained models. In Dynamical Heterogeneities in Glasses, Colloids, and Granular Media (L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti and W. van Saarloos, eds.). International Series of Monographs on Physics 150 111–137. Oxford Univ. Press, Oxford.
- [15] Gravner, J. and Griffeath, D. (1996). First passage times for threshold growth dynamics on $\mathbb{Z}^{2}$. Ann. Probab. 24 1752–1778.Mathematical Reviews (MathSciNet): MR1415228
Zentralblatt MATH: 0872.60077
Digital Object Identifier: doi:10.1214/aop/1041903205
Project Euclid: euclid.aop/1041903205 - [16] Gravner, J. and Griffeath, D. (1999). Scaling laws for a class of critical cellular automaton growth rules. In Random Walks (Budapest, 1998). Bolyai Soc. Math. Stud. 9 167–186. János Bolyai Math. Soc., Budapest.
- [17] Gravner, J., Holroyd, A. and Morris, R. (2012). A sharper threshold for bootstrap percolation in two dimensions. Probab. Theory Related Fields 153 1–23.Mathematical Reviews (MathSciNet): MR2925568
Zentralblatt MATH: 1254.60092
Digital Object Identifier: doi:10.1007/s00440-010-0338-z - [18] Gravner, J. and McDonald, E. (1997). Bootstrap percolation in a polluted environment. J. Stat. Phys. 87 915–927.Mathematical Reviews (MathSciNet): MR1459046
Zentralblatt MATH: 0919.60082
Digital Object Identifier: doi:10.1007/BF02181252 - [19] Grimmett, G. (1999). Percolation, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 321. Springer, Berlin.Mathematical Reviews (MathSciNet): MR1707339
- [20] Holroyd, A. E. (2003). Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theory Related Fields 125 195–224.Mathematical Reviews (MathSciNet): MR1961342
Zentralblatt MATH: 1042.60065
Digital Object Identifier: doi:10.1007/s00440-002-0239-x - [21] Holroyd, A. E. (2006). The metastability threshold for modified bootstrap percolation in $d$ dimensions. Electron. J. Probab. 11 418–433 (electronic).Mathematical Reviews (MathSciNet): MR2223042
Zentralblatt MATH: 1112.60080
Digital Object Identifier: doi:10.1214/EJP.v11-326 - [22] Holroyd, A. E., Liggett, T. M. and Romik, D. (2004). Integrals, partitions, and cellular automata. Trans. Amer. Math. Soc. 356 3349–3368 (electronic).Mathematical Reviews (MathSciNet): MR2052953
Zentralblatt MATH: 1095.60003
Digital Object Identifier: doi:10.1090/S0002-9947-03-03417-2 - [23] Morris, R. (2010). The phase transition for bootstrap percolation in two dimensions. Unpublished manuscript.
- [24] Mountford, T. S. (1993). Comparison of semi-oriented bootstrap percolation models with modified bootstrap percolation. In Cellular Automata and Cooperative Systems (Les Houches, 1992). NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 396 519–523. Kluwer Academic, Dordrecht.Mathematical Reviews (MathSciNet): MR1267991
Zentralblatt MATH: 0864.60085
Digital Object Identifier: doi:10.1007/978-94-011-1691-6_41 - [25] Mountford, T. S. (1995). Critical length for semi-oriented bootstrap percolation. Stochastic Process. Appl. 56 185–205.Mathematical Reviews (MathSciNet): MR1325219
Zentralblatt MATH: 0821.60092
Digital Object Identifier: doi:10.1016/0304-4149(94)00061-W - [26] Schonmann, R. H. (1990). Finite size scaling behavior of a biased majority rule cellular automaton. Phys. A 167 619–627.Mathematical Reviews (MathSciNet): MR1075567
Digital Object Identifier: doi:10.1016/0378-4371(90)90280-6 - [27] Schonmann, R. H. (1990). Critical points of two-dimensional bootstrap percolation-like cellular automata. J. Stat. Phys. 58 1239–1244.Mathematical Reviews (MathSciNet): MR1049067
Zentralblatt MATH: 0712.68071
Digital Object Identifier: doi:10.1007/BF01026574 - [28] Schonmann, R. H. (1992). On the behavior of some cellular automata related to bootstrap percolation. Ann. Probab. 20 174–193.Mathematical Reviews (MathSciNet): MR1143417
Zentralblatt MATH: 0742.60109
Digital Object Identifier: doi:10.1214/aop/1176989923
Project Euclid: euclid.aop/1176989923 - [29] Tlusty, T. and Eckmann, J. P. (2009). Remarks on bootstrap percolation in metric networks. J. Phys. A 42 205004.Mathematical Reviews (MathSciNet): MR2515591
Zentralblatt MATH: 1168.82014
Digital Object Identifier: doi:10.1088/1751-8113/42/20/205004 - [30] Toninelli, C. (2006). Bootstrap and jamming percolation. In Notes of Les Houches Summer School (J. P. Bouchaud, M. Mézard and J. Dalibard, eds.) 85 289–308. Elsevier, Berlin.
- [31] van Enter, A. C. D. (1987). Proof of Straley’s argument for bootstrap percolation. J. Stat. Phys. 48 943–945.Mathematical Reviews (MathSciNet): MR914911
Zentralblatt MATH: 1084.82548
Digital Object Identifier: doi:10.1007/BF01019705 - [32] van Enter, A. C. D., Adler, J. and Duarte, J. A. M. S. (1990). Finite-size effects for some bootstrap percolation models. J. Stat. Phys. 60 323–332.
- [33] van Enter, A. C. D. andFey, A. (2012). Metastability threshold for anisotropic bootstrap percolation in three dimensions. J. Stat. Phys. 147 97–112.Mathematical Reviews (MathSciNet): MR2922761
Zentralblatt MATH: 1243.82038
Digital Object Identifier: doi:10.1007/s10955-012-0455-4 - [34] van Enter, A. C. D. andHulshof, T. (2007). Finite-size effects for anisotropic bootstrap percolation: Logarithmic corrections. J. Stat. Phys. 128 1383–1389.Mathematical Reviews (MathSciNet): MR2352015
Zentralblatt MATH: 1206.82049
Digital Object Identifier: doi:10.1007/s10955-007-9377-y

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- The Metastability Threshold for Modified Bootstrap Percolation in $d$ Dimensions
Holroyd, Alexander, Electronic Journal of Probability, 2006 - Metastability in the Greenberg-Hastings Model
Fisch, Robert, Gravner, Janko, and Griffeath, David, The Annals of Applied Probability, 1993 - Large-range constant threshold growth model in one dimension
Sega, Gregor, Electronic Journal of Probability, 2009
- The Metastability Threshold for Modified Bootstrap Percolation in $d$ Dimensions
Holroyd, Alexander, Electronic Journal of Probability, 2006 - Metastability in the Greenberg-Hastings Model
Fisch, Robert, Gravner, Janko, and Griffeath, David, The Annals of Applied Probability, 1993 - Large-range constant threshold growth model in one dimension
Sega, Gregor, Electronic Journal of Probability, 2009 - Finite Size Scaling in Three-Dimensional Bootstrap
Percolation
Cerf, Raphaël and Cirillo, Emilio N. M., The Annals of Probability, 1999 - The time of bootstrap percolation with dense initial sets
Bollobás, Béla, Holmgren, Cecilia, Smith, Paul, and Uzzell, Andrew J., The Annals of Probability, 2014 - Local Bootstrap Percolation
Gravner, Janko and Holroyd, Alexander, Electronic Journal of Probability, 2009 - Nucleation parameters for discrete threshold growth on {$\bold Z\sp 2$}
Gravner, Janko and Griffeath, David, Experimental Mathematics, 1997 - Uniqueness of multi-dimensional infinite volume self-organized critical forest-fire models
Duerre, Maximilian, Electronic Communications in Probability, 2006 - Characteristic Exponents for Two-Dimensional Bootstrap Percolation
Andjel, Enrique D., The Annals of Probability, 1993 - A mathematical perspective on metastable wetting
Lacoin, Hubert and Teixeira, Augusto, Electronic Journal of Probability, 2015