The Annals of Probability

Diffusion processes in thin tubes and their limits on graphs

Sergio Albeverio and Seiichiro Kusuoka

Full-text: Open access

Abstract

The present paper is concerned with diffusion processes running on tubular domains with conditions on nonreaching the boundary, respectively, reflecting at the boundary, and corresponding processes in the limit where the thin tubular domains are shrinking to graphs. The methods we use are probabilistic ones. For shrinking, we use big potentials, respectively, reflection on the boundary of tubes. We show that there exists a unique limit process, and we characterize the limit process by a second-order differential generator acting on functions defined on the limit graph, with Kirchhoff boundary conditions at the vertices.

Article information

Source
Ann. Probab., Volume 40, Number 5 (2012), 2131-2167.

Dates
First available in Project Euclid: 8 October 2012

Permanent link to this document
https://projecteuclid.org/euclid.aop/1349703318

Digital Object Identifier
doi:10.1214/11-AOP667

Mathematical Reviews number (MathSciNet)
MR3025713

Zentralblatt MATH identifier
1267.60090

Subjects
Primary: 60J60: Diffusion processes [See also 58J65] 60H30: Applications of stochastic analysis (to PDE, etc.) 58J65: Diffusion processes and stochastic analysis on manifolds [See also 35R60, 60H10, 60J60]
Secondary: 60J35: Transition functions, generators and resolvents [See also 47D03, 47D07] 35K15: Initial value problems for second-order parabolic equations 34B45: Boundary value problems on graphs and networks

Keywords
Diffusion processes thin tubes processes on graphs Dirichlet boundary conditions Neumann boundary conditions Kirchhoff boundary conditions weak convergence

Citation

Albeverio, Sergio; Kusuoka, Seiichiro. Diffusion processes in thin tubes and their limits on graphs. Ann. Probab. 40 (2012), no. 5, 2131--2167. doi:10.1214/11-AOP667. https://projecteuclid.org/euclid.aop/1349703318


Export citation

References

  • [1] Aïssa, N. and Hamdache, K. (2007). Asymptotics of time harmonic solutions to a thin ferroelectric model. Abstr. Appl. Anal. 14.
  • [2] Albeverio, S., Cacciapuoti, C. and Finco, D. (2007). Coupling in the singular limit of thin quantum waveguides. J. Math. Phys. 48 21.
  • [3] Albeverio, S., di Persio, L. and Mastrogiacomo, E. (2010). Small noise asymptotic expansions for stochastic PDE’s. I. The case of a dissipative polynomially bounded non linearity. Preprint, Dip. Mathematica, Univ. Trento.
  • [4] Albeverio, S., Gesztesy, F., Høegh-Krohn, R. and Holden, H. (2005). Solvable Models in Quantum Mechanics, 2nd ed. AMS Chelsea Publishing, Providence, RI.
  • [5] Ali Mehmeti, F., von Below, J. and Nicaise, S. (2001). Partial Differential Equations on Multistructures: Proceedings of the International Conference held in Luminy, April 1924, 1999. Lect. Notes Pure Appl. Math. 219. Dekker, New York.
  • [6] Berkolaiko, G., Carlson, R., Fulling, S. A. and Kuchment, P. (2006). Quantum Graphs and Their Applications: Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference held in Snowbird, UT, June 1923, 2005. Contemp. Mathematics 415. Amer. Math. Soc., Providence, RI.
  • [7] Bonaccorsi, S. and Mastrogiacomo, E. (2008). Large deviation principle for stochastic FitzHugh–Nagumo equations on networks. Technical Report 725, Dept. Mathematics, Univ. Trento.
  • [8] Bonciocat, A. I. (2008). Curvature bounds and heat kernels: Discrete versus continuous spaces. Ph.D. thesis, Univ. Bonn.
  • [9] Cacciapuoti, C. and Exner, P. (2007). Nontrivial edge coupling from a Dirichlet network squeezing: The case of a bent waveguide. J. Phys. A 40 F511–F523.
  • [10] Cacciapuoti, C. and Finco, D. (2010). Graph-like models for thin waveguides with Robin boundary conditions. Asymptot. Anal. 70 199–230.
  • [11] Cardanobile, S., Mugnolo, D. and Nittka, R. (2008). Well-posedness and symmetries of strongly coupled network equations. J. Phys. A 41 28.
  • [12] Dell’Antonio, G. F. and Costa, E. (2010). Effective Schrödinger dynamics on $\varepsilon$-thin Dirichlet waveguides via quantum graphs. I. Star-shaped graphs. J. Phys. A 43 474014, 23.
  • [13] Dell’Antonio, G. F. and Tenuta, L. (2006). Quantum graphs as holonomic constraints. J. Math. Phys. 47 21.
  • [14] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence. Wiley, New York.
  • [15] Exner, P. and Post, O. (2005). Convergence of spectra of graph-like thin manifolds. J. Geom. Phys. 54 77–115.
  • [16] Exner, P. and Šeba, P. (1989). Bound states in curved quantum waveguides. J. Math. Phys. 30 2574–2580.
  • [17] Exner, P. and Šeba, P. (1989). Free quantum motion on a branching graph. Rep. Math. Phys. 28 7–26.
  • [18] Foote, R. L. (1984). Regularity of the distance function. Proc. Amer. Math. Soc. 92 153–155.
  • [19] Freidlin, M. and Spiliopoulos, K. (2008). Reaction–diffusion equations with nonlinear boundary conditions in narrow domains. Asymptot. Anal. 59 227–249.
  • [20] Freidlin, M. I. and Wentzell, A. D. (1984). Random Perturbations of Dynamical Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 260. Springer, New York.
  • [21] Freidlin, M. I. and Wentzell, A. D. (1993). Diffusion processes on graphs and the averaging principle. Ann. Probab. 21 2215–2245.
  • [22] Freidlin, M. I. and Wentzell, A. D. (2004). Diffusion processes on an open book and the averaging principle. Stochastic Process. Appl. 113 101–126.
  • [23] Fukushima, M., Ōshima, Y. and Takeda, M. (2011). Dirichlet Forms and Symmetric Markov Processes. de Gruyter Stud. Math. 19, Extended ed. de Gruyter, Berlin.
  • [24] Gerasimenko, N. I. and Pavlov, B. S. (1988). A scattering problem on noncompact graphs. Teoret. Mat. Fiz. 74 345–359.
  • [25] Grieser, D. (2008). Thin tubes in mathematical physics, global analysis and spectral geometry. In Analysis on Graphs and Its Applications. Proc. Sympos. Pure Math. 77 565–593. Amer. Math. Soc., Providence, RI.
  • [26] Has’minskiĭ, R. Z. (1960). Ergodic properties of recurrent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations. Teor. Veroyatn. Primen. 5 196–214.
  • [27] Ikeda, N. and Watanabe, S. (1989). Stochastic Differential Equations and Diffusion Processes, 2nd ed. North-Holland Mathematical Library 24. North-Holland, Amsterdam.
  • [28] Karp, L. and Pinsky, M. (1988). First-order asymptotics of the principal eigenvalue of tubular neighborhoods. In Geometry of Random Motion (Ithaca, N.Y., 1987). Contemp. Math. 73 105–119. Amer. Math. Soc., Providence, RI.
  • [29] Kostrykin, V. and Schrader, R. (2006). Laplacians on metric graphs: Eigenvalues, resolvents and semigroups. In Quantum Graphs and Their Applications. Contemp. Math. 415 201–225. Amer. Math. Soc., Providence, RI.
  • [30] Kosugi, S. (2002). Semilinear elliptic equations on thin network-shaped domains with variable thickness. J. Differential Equations 183 165–188.
  • [31] Kramar Fijavž, M., Mugnolo, D. and Sikolya, E. (2007). Variational and semigroup methods for waves and diffusion in networks. Appl. Math. Optim. 55 219–240.
  • [32] Kuchment, P. (2004). Quantum graphs. I. Some basic structures. Waves Random Media 14 S107–S128.
  • [33] Kuchment, P. (2005). Quantum graphs. II. Some spectral properties of quantum and combinatorial graphs. J. Phys. A 38 4887–4900.
  • [34] Kuchment, P. and Zeng, H. (2001). Convergence of spectra of mesoscopic systems collapsing onto a graph. J. Math. Anal. Appl. 258 671–700.
  • [35] Kurasov, P. (2008). Schrödinger operators on graphs and geometry. I. Essentially bounded potentials. J. Funct. Anal. 254 934–953.
  • [36] Lindvall, T. and Rogers, L. C. G. (1986). Coupling of multidimensional diffusions by reflection. Ann. Probab. 14 860–872.
  • [37] Lumer, G. (1980). Connecting of local operators and evolution equations on networks. In Potential Theory, Copenhagen 1979 (Proc. Colloq., Copenhagen, 1979). Lecture Notes in Math. 787 219–234. Springer, Berlin.
  • [38] Molchanov, S. and Vainberg, B. (2007). Scattering solutions in networks of thin fibers: Small diameter asymptotics. Comm. Math. Phys. 273 533–559.
  • [39] Mugnolo, D. (2007). Gaussian estimates for a heat equation on a network. Netw. Heterog. Media 2 55–79 (electronic).
  • [40] Mugnolo, D. (2008). A variational approach to strongly damped wave equations. In Functional Analysis and Evolution Equations 503–514. Birkhäuser, Basel.
  • [41] Post, O. (2005). Branched quantum wave guides with Dirichlet boundary conditions: The decoupling case. J. Phys. A 38 4917–4931.
  • [42] Raugel, G. (1995). Dynamics of partial differential equations on thin domains. In Dynamical Systems (Montecatini Terme, 1994). Lecture Notes in Math. 1609 208–315. Springer, Berlin.
  • [43] Rubinstein, J. and Schatzman, M. (2001). Variational problems on multiply connected thin strips: I. Basic estimates and convergence of the Laplacian spectrum. Arch. Ration. Mech. Anal. 160 271–308.
  • [44] Saitō, Y. (2001). Convergence of the Neumann Laplacian on shrinking domains. Analysis (Munich) 21 171–204.
  • [45] Spiliopoulos, K. (2009). Wiener process with reflection in non-smooth narrow tubes. Electron. J. Probab. 14 2011–2037.
  • [46] Stroock, D. W. and Varadhan, S. R. S. (1971). Diffusion processes with boundary conditions. Comm. Pure Appl. Math. 24 147–225.
  • [47] Stroock, D. W. and Varadhan, S. R. S. (1979). Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 233. Springer, Berlin.
  • [48] Tumulka, R. (2006). The analogue of Bohm–Bell processes on a graph. Phys. Lett. A 348 126–134.
  • [49] von Below, J. (1988). Sturm–Liouville eigenvalue problems on networks. Math. Methods Appl. Sci. 10 383–395.
  • [50] Yanagida, E. (2001). Stability of nonconstant steady states in reaction–diffusion systems on graphs. Japan J. Indust. Appl. Math. 18 25–42.